BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

918 related articles for article (PubMed ID: 21832427)

  • 1. High-order coupled cluster method study of frustrated and unfrustrated quantum magnets in external magnetic fields.
    Farnell DJ; Zinke R; Schulenburg J; Richter J
    J Phys Condens Matter; 2009 Oct; 21(40):406002. PubMed ID: 21832427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupled-cluster calculations for the ground and excited states of the spin-half XXZ model.
    Merdan M; Xian Y
    J Phys Condens Matter; 2011 Oct; 23(40):406001. PubMed ID: 21937779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic phase diagram of a spatially anisotropic, frustrated spin-¹/₂ Heisenberg antiferromagnet on a stacked square lattice.
    Majumdar K
    J Phys Condens Matter; 2011 Feb; 23(4):046001. PubMed ID: 21406896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-linear spin wave theory results for the frustrated [Formula: see text] Heisenberg antiferromagnet on a body-centered cubic lattice.
    Majumdar K; Datta T
    J Phys Condens Matter; 2009 Oct; 21(40):406004. PubMed ID: 21832429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The quantum spin-1/2 J1-J2 antiferromagnet on a stacked square lattice: a study of effective-field theory in a finite cluster.
    Nunes WA; de Sousa JR; Viana JR; Richter J
    J Phys Condens Matter; 2010 Apr; 22(14):146004. PubMed ID: 21389538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The frustrated Heisenberg antiferromagnet on the honeycomb lattice: J1-J2 model.
    Bishop RF; Li PH; Farnell DJ; Campbell CE
    J Phys Condens Matter; 2012 Jun; 24(23):236002. PubMed ID: 22569125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong H...F hydrogen bonds as synthons in polymeric quantum magnets: structural, magnetic, and theoretical characterization of [Cu(HF2)(pyrazine)2]SbF6, [Cu2F(HF)(HF2)(pyrazine)4](SbF6)2, and [CuAg(H3F4)(pyrazine)5](SbF6)2.
    Manson JL; Schlueter JA; Funk KA; Southerland HI; Twamley B; Lancaster T; Blundell SJ; Baker PJ; Pratt FL; Singleton J; McDonald RD; Goddard PA; Sengupta P; Batista CD; Ding L; Lee C; Whangbo MH; Franke I; Cox S; Baines C; Trial D
    J Am Chem Soc; 2009 May; 131(19):6733-47. PubMed ID: 19290599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spin-wave energy dispersion of a frustrated spin-½ Heisenberg antiferromagnet on a stacked square lattice.
    Majumdar K
    J Phys Condens Matter; 2011 Mar; 23(11):116004. PubMed ID: 21368361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopic model calculations for the magnetization process of layered triangular-lattice quantum antiferromagnets.
    Yamamoto D; Marmorini G; Danshita I
    Phys Rev Lett; 2015 Jan; 114(2):027201. PubMed ID: 25635561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of short and long-range magnetic order in the double perovskite based frustrated triangular lattice antiferromagnet Ba[Formula: see text]MnTeO[Formula: see text].
    Khatua J; Arh T; Mishra SB; Luetkens H; Zorko A; Sana B; Rao MSR; Nanda BRK; Khuntia P
    Sci Rep; 2021 Mar; 11(1):6959. PubMed ID: 33772050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field induced ordering in highly frustrated antiferromagnets.
    Zhitomirsky ME; Honecker A; Petrenko OA
    Phys Rev Lett; 2000 Oct; 85(15):3269-72. PubMed ID: 11019318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bold diagrammatic Monte Carlo method applied to fermionized frustrated spins.
    Kulagin SA; Prokof'ev N; Starykh OA; Svistunov B; Varney CN
    Phys Rev Lett; 2013 Feb; 110(7):070601. PubMed ID: 25166359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum J1-J2 antiferromagnet on a stacked square lattice: influence of the interlayer coupling on the ground-state magnetic ordering.
    Schmalfuss D; Darradi R; Richter J; Schulenburg J; Ihle D
    Phys Rev Lett; 2006 Oct; 97(15):157201. PubMed ID: 17155352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A constrained stochastic state selection method applied to quantum spin systems.
    Munehisa T; Munehisa Y
    J Phys Condens Matter; 2009 Jun; 21(23):236008. PubMed ID: 21825605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of a perpendicular magnetic field in the dipolar Heisenberg model with dominant exchange interaction.
    Abu-Labdeh AM; MacIsaac AB; De'Bell K
    J Phys Condens Matter; 2011 Jul; 23(29):296005. PubMed ID: 21737865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supersolidity in the triangular lattice spin-1/2 XXZ model: a variational perspective.
    Heidarian D; Paramekanti A
    Phys Rev Lett; 2010 Jan; 104(1):015301. PubMed ID: 20366369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetization process and collective excitations in the S=1/2 triangular-lattice Heisenberg antiferromagnet Ba3CoSb2O9.
    Susuki T; Kurita N; Tanaka T; Nojiri H; Matsuo A; Kindo K; Tanaka H
    Phys Rev Lett; 2013 Jun; 110(26):267201. PubMed ID: 23848914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cascade of magnetic-field-induced quantum phase transitions in a spin-1/2 triangular-lattice antiferromagnet.
    Fortune NA; Hannahs ST; Yoshida Y; Sherline TE; Ono T; Tanaka H; Takano Y
    Phys Rev Lett; 2009 Jun; 102(25):257201. PubMed ID: 19659114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling frustrated liquids and solids with an applied field in a kagome Heisenberg antiferromagnet.
    Nishimoto S; Shibata N; Hotta C
    Nat Commun; 2013; 4():2287. PubMed ID: 23912842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nested cluster algorithm for frustrated quantum antiferromagnets.
    Nyfeler M; Jiang FJ; Kämpfer F; Wiese UJ
    Phys Rev Lett; 2008 Jun; 100(24):247206. PubMed ID: 18643626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.