These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 21832479)
1. Comment on 'Vibration analysis of fluid-conveying double-walled carbon nanotubes based on nonlocal elastic theory'. Tounsi A; Heireche H; Benzair A; Mechab I J Phys Condens Matter; 2009 Nov; 21(44):448001. PubMed ID: 21832479 [TBL] [Abstract][Full Text] [Related]
2. Vibration analysis of fluid-conveying double-walled carbon nanotubes based on nonlocal elastic theory. Lee HL; Chang WJ J Phys Condens Matter; 2009 Mar; 21(11):115302. PubMed ID: 21693915 [TBL] [Abstract][Full Text] [Related]
3. Scale effect on wave propagation of double-walled carbon nanotubes with initial axial loading. Heireche H; Tounsi A; Benzair A Nanotechnology; 2008 May; 19(18):185703. PubMed ID: 21825699 [TBL] [Abstract][Full Text] [Related]
4. Free vibration analysis of DWCNTs using CDM and Rayleigh-Schmidt based on Nonlocal Euler-Bernoulli beam theory. De Rosa MA; Lippiello M ScientificWorldJournal; 2014; 2014():194529. PubMed ID: 24715807 [TBL] [Abstract][Full Text] [Related]
5. A Nonlinear Nonlocal Thermoelasticity Euler-Bernoulli Beam Theory and Its Application to Single-Walled Carbon Nanotubes. Huang K; Xu W Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839089 [TBL] [Abstract][Full Text] [Related]
6. Computational modelling of a non-viscous fluid flow in a multi-walled carbon nanotube modelled as a Timoshenko beam. Khosravian N; Rafii-Tabar H Nanotechnology; 2008 Jul; 19(27):275703. PubMed ID: 21828715 [TBL] [Abstract][Full Text] [Related]
7. Vibration Analysis of Fluid Conveying Carbon Nanotubes Based on Nonlocal Timoshenko Beam Theory by Spectral Element Method. Yi X; Li B; Wang Z Nanomaterials (Basel); 2019 Dec; 9(12):. PubMed ID: 31847397 [TBL] [Abstract][Full Text] [Related]
8. The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Wang Q; Wang CM Nanotechnology; 2007 Feb; 18(7):075702. PubMed ID: 21730510 [TBL] [Abstract][Full Text] [Related]
9. Resonance frequency and mass identification of zeptogram-scale nanosensor based on the nonlocal beam theory. Li XF; Tang GJ; Shen ZB; Lee KY Ultrasonics; 2015 Jan; 55():75-84. PubMed ID: 25149195 [TBL] [Abstract][Full Text] [Related]
10. Variational principles for transversely vibrating multiwalled carbon nanotubes based on nonlocal Euler-Bernoulli beam model. Adali S Nano Lett; 2009 May; 9(5):1737-41. PubMed ID: 19344117 [TBL] [Abstract][Full Text] [Related]
11. Imperfection Sensitivity of Nonlinear Vibration of Curved Single-Walled Carbon Nanotubes Based on Nonlocal Timoshenko Beam Theory. Eshraghi I; Jalali SK; Pugno NM Materials (Basel); 2016 Sep; 9(9):. PubMed ID: 28773911 [TBL] [Abstract][Full Text] [Related]
12. Nonlinear Vibration of Double-Walled Carbon Nanotubes Subjected to Mechanical Impact and Embedded on Winkler-Pasternak Foundation. Herisanu N; Marinca B; Marinca V Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500095 [TBL] [Abstract][Full Text] [Related]
13. Nonlocal continuum model and molecular dynamics for free vibration of single-walled carbon nanotubes. Hu YG; Liew KM; Wang Q J Nanosci Nanotechnol; 2011 Dec; 11(12):10401-7. PubMed ID: 22408916 [TBL] [Abstract][Full Text] [Related]
14. Terahertz Wave Propagation in a Nanotube Conveying Fluid Taking into Account Surface Effect. Zhang YW; Yang TZ; Zang J; Fang B Materials (Basel); 2013 Jun; 6(6):2393-2399. PubMed ID: 28809279 [TBL] [Abstract][Full Text] [Related]
15. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review. Cole MW; Crespi VH; Dresselhaus MS; Dresselhaus G; Fischer JE; Gutierrez HR; Kojima K; Mahan GD; Rao AM; Sofo JO; Tachibana M; Wako K; Xiong Q J Phys Condens Matter; 2010 Aug; 22(33):334201. PubMed ID: 21386491 [TBL] [Abstract][Full Text] [Related]
16. Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes. Zhang YY; Wang CM; Duan WH; Xiang Y; Zong Z Nanotechnology; 2009 Sep; 20(39):395707. PubMed ID: 19724103 [TBL] [Abstract][Full Text] [Related]
17. A nonlocal shell model for mode transformation in single-walled carbon nanotubes. Shi MX; Li QM; Huang Y J Phys Condens Matter; 2009 Nov; 21(45):455301. PubMed ID: 21694006 [TBL] [Abstract][Full Text] [Related]
18. Thermal vibration of a single-walled carbon nanotube predicted by semiquantum molecular dynamics. Liu R; Wang L Phys Chem Chem Phys; 2015 Feb; 17(7):5194-201. PubMed ID: 25599883 [TBL] [Abstract][Full Text] [Related]
19. Vibration Characteristics of Magnetostrictive Composite Cantilever Resonator with Nonlocal Effect. Xu Y; Shang X; Xu K Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205084 [TBL] [Abstract][Full Text] [Related]
20. Exploring the benefits of functionally graded carbon nanotubes (FG-CNTs) as a platform for targeted drug delivery systems. Heidary Z; Ramezani SR; Mojra A Comput Methods Programs Biomed; 2023 Aug; 238():107603. PubMed ID: 37230049 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]