These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 21832505)

  • 1. Application of density functional theory to CO tolerance in fuel cells: a brief review.
    Stolbov S; Alcantara Ortigoza M; Rahman TS
    J Phys Condens Matter; 2009 Nov; 21(47):474226. PubMed ID: 21832505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High CO tolerance of Pt/Ru nanocatalyst: insight from first principles calculations.
    Stolbov S; Ortigoza MA; Adzic R; Rahman TS
    J Chem Phys; 2009 Mar; 130(12):124714. PubMed ID: 19334879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ru-decorated Pt surfaces as model fuel cell electrocatalysts for CO electrooxidation.
    Maillard F; Lu GQ; Wieckowski A; Stimming U
    J Phys Chem B; 2005 Sep; 109(34):16230-43. PubMed ID: 16853064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bifunctional electrocatalysis in pt-ru nanoparticle systems.
    Roth C; Benker N; Theissmann R; Nichols RJ; Schiffrin DJ
    Langmuir; 2008 Mar; 24(5):2191-9. PubMed ID: 18211103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature dependence of CO-tolerant hydrogen oxidation reaction activity at Pt, Pt-Co, and Pt-Ru electrodes.
    Uchida H; Izumi K; Watanabe M
    J Phys Chem B; 2006 Nov; 110(43):21924-30. PubMed ID: 17064160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First principles study of oxygen adsorption on Se-modified Ru nanoparticles.
    Zuluaga S; Stolbov S
    J Phys Condens Matter; 2012 Aug; 24(34):345303. PubMed ID: 22871976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrocatalytic oxidation of ethylene glycol on Pt and Pt-Ru nanoparticles modified multi-walled carbon nanotubes.
    Selvaraj V; Vinoba M; Alagar M
    J Colloid Interface Sci; 2008 Jun; 322(2):537-44. PubMed ID: 18402968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimum nanoparticles for electrocatalytic oxygen reduction: the size, shape and new design.
    Wei GF; Liu ZP
    Phys Chem Chem Phys; 2013 Nov; 15(42):18555-61. PubMed ID: 24077215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic structures of Pt-Co and Pt-Ru alloys for CO-tolerant anode catalysts in polymer electrolyte fuel cells studied by EC-XPS.
    Wakisaka M; Mitsui S; Hirose Y; Kawashima K; Uchida H; Watanabe M
    J Phys Chem B; 2006 Nov; 110(46):23489-96. PubMed ID: 17107203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixed-metal Pt monolayer electrocatalysts with improved CO tolerance.
    Nilekar AU; Sasaki K; Farberow CA; Adzic RR; Mavrikakis M
    J Am Chem Soc; 2011 Nov; 133(46):18574-6. PubMed ID: 22026558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of Pt/Ru nanoparticle pair arrays with controlled separation and their electrocatalytic properties.
    Wickman B; Seidel YE; Jusys Z; Kasemo B; Behm RJ
    ACS Nano; 2011 Apr; 5(4):2547-58. PubMed ID: 21443165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A theoretical study of H(2) dissociation on (sq.rt(3) x sq.rt(3))R30 degrees CO/Ru(0001).
    Groot IM; Juanes-Marcos JC; Olsen RA; Kroes GJ
    J Chem Phys; 2010 Apr; 132(14):144704. PubMed ID: 20406007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shear instabilities in metallic nanoparticles: hydrogen-stabilized structure of Pt37 on carbon.
    Wang LL; Johnson DD
    J Am Chem Soc; 2007 Mar; 129(12):3658-64. PubMed ID: 17338525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen.
    Alayoglu S; Nilekar AU; Mavrikakis M; Eichhorn B
    Nat Mater; 2008 Apr; 7(4):333-8. PubMed ID: 18345004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence of nonelectrochemical shift reaction on a CO-tolerant high-entropy state Pt-Ru anode catalyst for reliable and efficient residential fuel cell systems.
    Takeguchi T; Yamanaka T; Asakura K; Muhamad EN; Uosaki K; Ueda W
    J Am Chem Soc; 2012 Sep; 134(35):14508-12. PubMed ID: 22876851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of formation mechanism of Pt(111) nanoparticle layers grown on Ru(0001) core.
    Chou HL; Lai FJ; Su WN; Pillai KC; Sarma LS; Hwang BJ
    Langmuir; 2011 Feb; 27(3):1131-5. PubMed ID: 21210646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational design of CO-tolerant Pt
    Liu Y; Duan Z; Henkelman G
    Phys Chem Chem Phys; 2019 Feb; 21(7):4046-4052. PubMed ID: 30714589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density functional theory study of water activation and COads + OHads reaction on pure platinum and bimetallic platinum/ruthenium nanoclusters.
    Perez A; Vilkas MJ; Cabrera CR; Ishikawa Y
    J Phys Chem B; 2005 Dec; 109(49):23571-8. PubMed ID: 16375333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrocatalytic performance of fuel oxidation by Pt3Ti nanoparticles.
    Abe H; Matsumoto F; Alden LR; Warren SC; Abruña HD; DiSalvo FJ
    J Am Chem Soc; 2008 Apr; 130(16):5452-8. PubMed ID: 18370390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.