These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Unconventional terahertz carrier relaxation in graphene oxide: observation of enhanced auger recombination due to defect saturation. Kim J; Oh J; In C; Lee YS; Norris TB; Jun SC; Choi H ACS Nano; 2014 Mar; 8(3):2486-94. PubMed ID: 24494802 [TBL] [Abstract][Full Text] [Related]
6. Probing Photoexcited Carriers in a Few-Layer MoS2 Laminate by Time-Resolved Optical Pump-Terahertz Probe Spectroscopy. Kar S; Su Y; Nair RR; Sood AK ACS Nano; 2015 Dec; 9(12):12004-10. PubMed ID: 26516987 [TBL] [Abstract][Full Text] [Related]
7. Lifetime, mobility, and diffusion of photoexcited carriers in ligand-exchanged lead selenide nanocrystal films measured by time-resolved terahertz spectroscopy. Guglietta GW; Diroll BT; Gaulding EA; Fordham JL; Li S; Murray CB; Baxter JB ACS Nano; 2015 Feb; 9(2):1820-8. PubMed ID: 25644854 [TBL] [Abstract][Full Text] [Related]
8. Electron mobility and injection dynamics in mesoporous ZnO, SnO₂, and TiO₂ films used in dye-sensitized solar cells. Tiwana P; Docampo P; Johnston MB; Snaith HJ; Herz LM ACS Nano; 2011 Jun; 5(6):5158-66. PubMed ID: 21595483 [TBL] [Abstract][Full Text] [Related]
9. Metal-Organic Framework Photoconductivity via Time-Resolved Terahertz Spectroscopy. Pattengale B; Neu J; Ostresh S; Hu G; Spies JA; Okabe R; Brudvig GW; Schmuttenmaer CA J Am Chem Soc; 2019 Jun; 141(25):9793-9797. PubMed ID: 31179698 [TBL] [Abstract][Full Text] [Related]
10. Measurement of the frequency-dependent conductivity in sapphire. Shan J; Wang F; Knoesel E; Bonn M; Heinz TF Phys Rev Lett; 2003 Jun; 90(24):247401. PubMed ID: 12857225 [TBL] [Abstract][Full Text] [Related]
11. Direct comparison of time-resolved Terahertz spectroscopy and Hall Van der Pauw methods for measurement of carrier conductivity and mobility in bulk semiconductors. Alberding BG; Thurber WR; Heilweil EJ J Opt Soc Am B; 2017 Jul; 34(7):1392-1406. PubMed ID: 28924327 [TBL] [Abstract][Full Text] [Related]
12. Charge transport and diffusion of ionic liquids in nanoporous silica membranes. Iacob C; Sangoro JR; Papadopoulos P; Schubert T; Naumov S; Valiullin R; Kärger J; Kremer F Phys Chem Chem Phys; 2010 Nov; 12(41):13798-803. PubMed ID: 20824257 [TBL] [Abstract][Full Text] [Related]
13. Ultrafast photocarrier dynamics in Fe-implanted InGaAs polycrystalline photoconductive materials. Jubgang Fandio DJ; Ilahi B; Dion M; Petrov B; Pelletier H; Arès R; Morris D J Phys Condens Matter; 2021 Jul; 33(38):. PubMed ID: 34212865 [TBL] [Abstract][Full Text] [Related]
14. Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. Baxter JB; Schmuttenmaer CA J Phys Chem B; 2006 Dec; 110(50):25229-39. PubMed ID: 17165967 [TBL] [Abstract][Full Text] [Related]
15. Photostimulated electron detrapping and the two-state model for electron transport in nonpolar liquids. Shkrob IA; Sauer MC J Chem Phys; 2005 Apr; 122(13):134503. PubMed ID: 15847477 [TBL] [Abstract][Full Text] [Related]
16. Growth of InP nanostructures via reaction of indium droplets with phosphide ions: synthesis of InP quantum rods and InP-TiO2 composites. Nedeljković JM; Mićić OI; Ahrenkiel SP; Miedaner A; Nozik AJ J Am Chem Soc; 2004 Mar; 126(8):2632-9. PubMed ID: 14982473 [TBL] [Abstract][Full Text] [Related]
17. Photoinduced charge carrier generation in a poly(3-hexylthiophene) and methanofullerene bulk heterojunction investigated by time-resolved terahertz spectroscopy. Ai X; Beard MC; Knutsen KP; Shaheen SE; Rumbles G; Ellingson RJ J Phys Chem B; 2006 Dec; 110(50):25462-71. PubMed ID: 17165994 [TBL] [Abstract][Full Text] [Related]
18. Ultrafast far-infrared dynamics probed by terahertz pulses: a frequency-domain approach. II. Applications. Nĕmec H; Kadlec F; Kadlec C; Kuzel P; Jungwirth P J Chem Phys; 2005 Mar; 122(10):104504. PubMed ID: 15836329 [TBL] [Abstract][Full Text] [Related]
19. Effects of two-photon absorption on terahertz radiation generated by femtosecond-laser excited photoconductive antennas. Lee CK; Yang CS; Lin SH; Huang SH; Wada O; Pan CL Opt Express; 2011 Nov; 19(24):23689-97. PubMed ID: 22109395 [TBL] [Abstract][Full Text] [Related]