These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 21832638)
1. Electrical transport properties of fullerene peapods interacting with light. Li YF; Kaneko T; Hatakeyama R Nanotechnology; 2008 Oct; 19(41):415201. PubMed ID: 21832638 [TBL] [Abstract][Full Text] [Related]
2. Azafullerene encapsulated single-walled carbon nanotubes with n-type electrical transport property. Kaneko T; Li Y; Nishigaki S; Hatakeyama R J Am Chem Soc; 2008 Mar; 130(9):2714-5. PubMed ID: 18257566 [TBL] [Abstract][Full Text] [Related]
3. In situ Raman spectroelectrochemical study of 13C-labeled fullerene peapods and carbon nanotubes. Kalbác M; Kavan L; Zukalová M; Dunsch L Small; 2007 Oct; 3(10):1746-52. PubMed ID: 17853497 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and property characterization of c(69)n azafullerene encapsulated single-walled carbon nanotubes. Li Y; Kaneko T; Miyanaga S; Hatakeyama R ACS Nano; 2010 Jun; 4(6):3522-6. PubMed ID: 20509615 [TBL] [Abstract][Full Text] [Related]
5. The change of the state of an endohedral fullerene by encapsulation into SWCNT: a Raman spectroelectrochemical study of Dy3N@C80 peapods. Kalbác M; Kavan L; Zukalová M; Yang S; Cech J; Roth S; Dunsch L Chemistry; 2007; 13(31):8811-7. PubMed ID: 17665375 [TBL] [Abstract][Full Text] [Related]
6. Helical superstructures of fullerene peapods and empty single-walled carbon nanotubes formed in water. Nakashima N; Tanaka Y; Tomonari Y; Murakami H; Kataura H; Sakaue T; Yoshikawa K J Phys Chem B; 2005 Jul; 109(27):13076-82. PubMed ID: 16852626 [TBL] [Abstract][Full Text] [Related]
7. Thermally assisted tunnelling in ambipolar field-effect transistors based on fullerene peapod bundles. Guo A; Fu Y; Guan L; Liu J; Shi Z; Gu Z; Huang R; Zhang X Nanotechnology; 2006 May; 17(10):2655-60. PubMed ID: 21727520 [TBL] [Abstract][Full Text] [Related]
8. Nanoelectromechanical coupling in fullerene peapods probed by resonant electrical transport experiments. Utko P; Ferone R; Krive IV; Shekhter RI; Jonson M; Monthioux M; Noé L; Nygård J Nat Commun; 2010 Jul; 1():37. PubMed ID: 20975710 [TBL] [Abstract][Full Text] [Related]
9. Photoswitching in azafullerene encapsulated single-walled carbon nanotube FET devices. Li Y; Kaneko T; Kong J; Hatakeyama R J Am Chem Soc; 2009 Mar; 131(10):3412-3. PubMed ID: 19231854 [TBL] [Abstract][Full Text] [Related]
10. Doping of C60 fullerene peapods with lithium vapor: Raman spectroscopic and spectroelectrochemical studies. Kalbác M; Kavan L; Zukalová M; Dunsch L Chemistry; 2008; 14(20):6231-6. PubMed ID: 18512827 [TBL] [Abstract][Full Text] [Related]
11. Spectroelectrochemistry of carbon nanostructures. Kavan L; Dunsch L Chemphyschem; 2007 May; 8(7):974-98. PubMed ID: 17476657 [TBL] [Abstract][Full Text] [Related]
12. Doping of C70 fullerene peapods with lithium vapor: Raman spectroscopic and Raman spectroelectrochemical studies. Kalbáč M; Vales V; Kavan L; Dunsch L Nanotechnology; 2014 Dec; 25(48):485706. PubMed ID: 25397777 [TBL] [Abstract][Full Text] [Related]
13. Thermal/electron irradiation assisted coalescence of Sc3N@C80 fullerene in carbon nanotube and evidence of charge transfer between pristine/coalesced fullerenes and nanotubes. Fallah A; Yonetani Y; Senga R; Hirahara K; Kitaura R; Shinohara H; Nakayama Y Nanoscale; 2013 Dec; 5(23):11755-60. PubMed ID: 24121541 [TBL] [Abstract][Full Text] [Related]
14. Diameter modulation by fast temperature control in laser-assisted chemical vapor deposition of single-walled carbon nanotubes. Mahjouri-Samani M; Zhou YS; Xiong W; Gao Y; Mitchell M; Jiang L; Lu YF Nanotechnology; 2010 Oct; 21(39):395601. PubMed ID: 20808037 [TBL] [Abstract][Full Text] [Related]
16. Insertion of C50 into single-walled carbon nanotubes: Selectivity in interwall spacing and C50 isomers. Zhou Z; Zhao J; Schleyer Pv; Chen Z J Comput Chem; 2008 Apr; 29(5):781-7. PubMed ID: 17876758 [TBL] [Abstract][Full Text] [Related]
17. Interaction between fullerenes and single-wall carbon nanotubes: the influence of fullerene size and electronic structure. Hao J; Guan L; Guo X; Lian Y; Zhao S; Dong J; Yang S; Zhang H; Sun B J Nanosci Nanotechnol; 2011 Sep; 11(9):7857-62. PubMed ID: 22097497 [TBL] [Abstract][Full Text] [Related]
18. Raman spectroscopy of fullerenes and fullerene-nanotube composites. Kuzmany H; Pfeiffer R; Hulman M; Kramberger C Philos Trans A Math Phys Eng Sci; 2004 Nov; 362(1824):2375-406. PubMed ID: 15482984 [TBL] [Abstract][Full Text] [Related]
19. Assessment of chemically separated carbon nanotubes for nanoelectronics. Zhang L; Zaric S; Tu X; Wang X; Zhao W; Dai H J Am Chem Soc; 2008 Feb; 130(8):2686-91. PubMed ID: 18251484 [TBL] [Abstract][Full Text] [Related]
20. Resonant laser-induced formation of double-walled carbon nanotubes from peapods under ambient conditions. Berd M; Puech P; Righi A; Benfdila A; Monthioux M Small; 2012 Jul; 8(13):2045-52. PubMed ID: 22508660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]