These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 21832677)
1. The effect of crystallinity in donor groups on the performance of photovoltaic devices based on an oligothiophene-fullerene dyad. Nishizawa T; Tajima K; Hashimoto K Nanotechnology; 2008 Oct; 19(42):424017. PubMed ID: 21832677 [TBL] [Abstract][Full Text] [Related]
2. Diketopyrrolopyrrole-based π-bridged donor-acceptor polymer for photovoltaic applications. Li W; Lee T; Oh SJ; Kagan CR ACS Appl Mater Interfaces; 2011 Oct; 3(10):3874-83. PubMed ID: 21888419 [TBL] [Abstract][Full Text] [Related]
3. Ultrafast exciton dissociation followed by nongeminate charge recombination in PCDTBT:PCBM photovoltaic blends. Etzold F; Howard IA; Mauer R; Meister M; Kim TD; Lee KS; Baek NS; Laquai F J Am Chem Soc; 2011 Jun; 133(24):9469-79. PubMed ID: 21553906 [TBL] [Abstract][Full Text] [Related]
5. Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications. Kim CH; Cha SH; Kim SC; Song M; Lee J; Shin WS; Moon SJ; Bahng JH; Kotov NA; Jin SH ACS Nano; 2011 Apr; 5(4):3319-25. PubMed ID: 21438626 [TBL] [Abstract][Full Text] [Related]
6. Efficient bulk heterojunction solar cells with poly[2,7-(9,9-dihexylfluorene)-alt-bithiophene] and 6,6-phenyl C61 butyric acid methyl ester blends and their application in tandem cells. Zhao D; Tang W; Ke L; Tan ST; Sun XW ACS Appl Mater Interfaces; 2010 Mar; 2(3):829-37. PubMed ID: 20356288 [TBL] [Abstract][Full Text] [Related]
7. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Li Y Acc Chem Res; 2012 May; 45(5):723-33. PubMed ID: 22288572 [TBL] [Abstract][Full Text] [Related]
8. Donor-acceptor alternating copolymers as donor materials for bulk-heterojunction solar cells: effects of molecular structure on film morphology and device performance. Xue L; Li Y; Dong F; Tian W Nanotechnology; 2010 Apr; 21(15):155201. PubMed ID: 20299728 [TBL] [Abstract][Full Text] [Related]
9. Influence of charge carrier mobility and morphology on solar cell parameters in devices of mono- and bis-fullerene adducts. Muth MA; Mitchell W; Tierney S; Lada TA; Xue X; Richter H; Carrasco-Orozco M; Thelakkat M Nanotechnology; 2013 Dec; 24(48):484001. PubMed ID: 24196215 [TBL] [Abstract][Full Text] [Related]
11. The effect of thermal annealing on the charge transfer dynamics of a donor-acceptor copolymer and fullerene: F8T2 and F8T2:PCBM. Garcia-Basabe Y; Yamamoto NA; Roman LS; Rocco ML Phys Chem Chem Phys; 2015 May; 17(17):11244-51. PubMed ID: 25836380 [TBL] [Abstract][Full Text] [Related]
12. Effects of nanomorphological changes on the performance of solar cells with blends of poly[9,9'-dioctyl-fluorene-co-bithiophene] and a soluble fullerene. Huang JH; Ho ZY; Kekuda D; Chang Y; Chu CW; Ho KC Nanotechnology; 2009 Jan; 20(2):025202. PubMed ID: 19417264 [TBL] [Abstract][Full Text] [Related]
13. Linear-scaling density functional simulations of the effect of crystallographic structure on the electronic and optical properties of fullerene solvates. Xue HT; Boschetto G; Krompiec M; Morse GE; Tang FL; Skylaris CK Phys Chem Chem Phys; 2017 Feb; 19(7):5617-5628. PubMed ID: 28168245 [TBL] [Abstract][Full Text] [Related]
14. Effect of multiple adduct fullerenes on microstructure and phase behavior of P3HT:fullerene blend films for organic solar cells. Guilbert AA; Reynolds LX; Bruno A; MacLachlan A; King SP; Faist MA; Pires E; Macdonald JE; Stingelin N; Haque SA; Nelson J ACS Nano; 2012 May; 6(5):3868-75. PubMed ID: 22533706 [TBL] [Abstract][Full Text] [Related]
15. Organic photovoltaic devices based on a new class of oligothienylenevinylene derivatives as donor materials. Kwok EC; Tsang DP; Chan MY; Yam VW Chemistry; 2013 Feb; 19(8):2757-67. PubMed ID: 23292637 [TBL] [Abstract][Full Text] [Related]
16. Structure, dynamics, and power conversion efficiency correlations in a new low bandgap polymer: PCBM solar cell. Guo J; Liang Y; Szarko J; Lee B; Son HJ; Rolczynski BS; Yu L; Chen LX J Phys Chem B; 2010 Jan; 114(2):742-8. PubMed ID: 20038154 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and photophysical properties of two dual oligothiophene-fullerene linkage molecules as photoinduced long-distance charge separation systems. Narutaki M; Takimiya K; Otsubo T; Harima Y; Zhang H; Araki Y; Ito O J Org Chem; 2006 Mar; 71(5):1761-8. PubMed ID: 16496959 [TBL] [Abstract][Full Text] [Related]
18. Probing the nanoscale phase separation in binary photovoltaic blends of poly(3-hexylthiophene) and methanofullerene by energy transfer. Ruseckas A; Shaw PE; Samuel ID Dalton Trans; 2009 Dec; (45):10040-3. PubMed ID: 19904431 [TBL] [Abstract][Full Text] [Related]
19. Charge separation and fullerene triplet formation in blend films of polyfluorene polymers with [6,6]-phenyl C61 butyric acid methyl ester. Benson-Smith JJ; Ohkita H; Cook S; Durrant JR; Bradley DD; Nelson J Dalton Trans; 2009 Dec; (45):10000-5. PubMed ID: 19904426 [TBL] [Abstract][Full Text] [Related]
20. Controlling vertical morphology within the active layer of organic photovoltaics using poly(3-hexylthiophene) nanowires and phenyl-C61-butyric acid methyl ester. Rice AH; Giridharagopal R; Zheng SX; Ohuchi FS; Ginger DS; Luscombe CK ACS Nano; 2011 Apr; 5(4):3132-40. PubMed ID: 21443250 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]