BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 21832678)

  • 1. Spray-deposited CuInS(2) solar cells.
    Goossens A; Hofhuis J
    Nanotechnology; 2008 Oct; 19(42):424018. PubMed ID: 21832678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of nanocrystal ink based superstrate-type CuInS₂ thin film solar cells.
    Cho JW; Park SJ; Kim W; Min BK
    Nanotechnology; 2012 Jul; 23(26):265401. PubMed ID: 22699212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deposition of ultra thin CuInS₂ absorber layers by ALD for thin film solar cells at low temperature (down to 150 °C).
    Schneider N; Bouttemy M; Genevée P; Lincot D; Donsanti F
    Nanotechnology; 2015 Feb; 26(5):054001. PubMed ID: 25586382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of CuInS₂ Nano-Particles on TiO₂ by Spray Pyrolysis for CuInS₂/TiO₂ Composite Solar Cell.
    Park GC; Li ZY; Yang OB
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2728-731. PubMed ID: 29664592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of energy band alignment at the Zn(1-x)Mg(x)O/Cu(In,Ga)Se2 interface for Cd-free Cu(In,Ga)Se2 solar cells.
    Lee CS; Larina L; Shin YM; Al-Ammar EA; Ahn BT
    Phys Chem Chem Phys; 2012 Apr; 14(14):4789-95. PubMed ID: 22382807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Stoichiometric Amorphous Indium Selenide Thin Films as a Buffer Layer for CIGS Solar Cells with Various Temperatures in Rapid Thermal Annealing.
    Yoo MH; Kim NH
    J Nanosci Nanotechnol; 2016 May; 16(5):5070-3. PubMed ID: 27483873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the electronic structure and photoactivation process of nitrogen-doped TiO2 using DRS, PL, and EPR.
    Zhang Z; Long J; Xie X; Lin H; Zhou Y; Yuan R; Dai W; Ding Z; Wang X; Fu X
    Chemphyschem; 2012 Apr; 13(6):1542-50. PubMed ID: 22407673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution-processable triindoles as hole selective materials in organic solar cells.
    Shelton SW; Chen TL; Barclay DE; Ma B
    ACS Appl Mater Interfaces; 2012 May; 4(5):2534-40. PubMed ID: 22497547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Layer-by-layer assembled multilayer TiO(x) for efficient electron acceptor in polymer hybrid solar cells.
    Kang H; Lee C; Yoon SC; Cho CH; Cho J; Kim BJ
    Langmuir; 2010 Nov; 26(22):17589-95. PubMed ID: 20925374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities.
    Odobel F; Le Pleux L; Pellegrin Y; Blart E
    Acc Chem Res; 2010 Aug; 43(8):1063-71. PubMed ID: 20455541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoexcited Carrier Dynamics of In2S3 Thin Films.
    McCarthy RF; Schaller RD; Gosztola DJ; Wiederrecht GP; Martinson AB
    J Phys Chem Lett; 2015 Jul; 6(13):2554-61. PubMed ID: 26266733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density functional study of the interfacial electron transfer pathway for monolayer-adsorbed InN on the TiO(2) anatase (101) surface.
    Lin JS; Chou WC; Lu SY; Jang GJ; Tseng BR; Li YT
    J Phys Chem B; 2006 Nov; 110(46):23460-6. PubMed ID: 17107198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of CuInS2 thin film formation by a low-temperature chemical deposition method.
    Fischereder A; Rath T; Haas W; Amenitsch H; Schenk D; Zankel A; Saf R; Hofer F; Trimmel G
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):382-90. PubMed ID: 22132877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum confinement in amorphous TiO(2) films studied via atomic layer deposition.
    King DM; Du X; Cavanagh AS; Weimer AW
    Nanotechnology; 2008 Nov; 19(44):445401. PubMed ID: 21832729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of hydrogen in working gas on valence States of oxygen in sputter-deposited indium tin oxide thin films.
    Luo S; Kohiki S; Okada K; Kohno A; Tajiri T; Arai M; Ishii S; Sekiba D; Mitome M; Shoji F
    ACS Appl Mater Interfaces; 2010 Mar; 2(3):663-8. PubMed ID: 20356266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bulk heterojunction formation between indium tin oxide nanorods and CuInS2 nanoparticles for inorganic thin film solar cell applications.
    Cho JW; Park SJ; Kim J; Kim W; Park HK; Do YR; Min BK
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):849-53. PubMed ID: 22235945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells.
    Pianezzi F; Reinhard P; Chirilă A; Bissig B; Nishiwaki S; Buecheler S; Tiwari AN
    Phys Chem Chem Phys; 2014 May; 16(19):8843-51. PubMed ID: 24675872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deposition of CuInS2 thin films using copper- and indium/sulfide-containing precursors through a two-stage MOCVD method.
    Lee SS; Seo KW; Park JP; Kim SK; Shim IW
    Inorg Chem; 2007 Feb; 46(3):1013-7. PubMed ID: 17257045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural evolution of nanocrystalline silicon thin films synthesized in high-density, low-temperature reactive plasmas.
    Cheng Q; Xu S; Ostrikov KK
    Nanotechnology; 2009 May; 20(21):215606. PubMed ID: 19423937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge collection and pore filling in solid-state dye-sensitized solar cells.
    Snaith HJ; Humphry-Baker R; Chen P; Cesar I; Zakeeruddin SM; Grätzel M
    Nanotechnology; 2008 Oct; 19(42):424003. PubMed ID: 21832663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.