These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 21832733)

  • 21. InP and InAs nanowires hetero- and homojunctions: energetic stability and electronic properties.
    Dionízio Moreira M; Venezuela P; Miwa RH
    Nanotechnology; 2010 Jul; 21(28):285204. PubMed ID: 20562482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Near-critical Stranski-Krastanov growth of InAs/InP quantum dots.
    Berdnikov Y; Holewa P; Kadkhodazadeh S; Śmigiel JM; Sakanas A; Frackowiak A; Yvind K; Syperek M; Semenova E
    Sci Rep; 2024 Oct; 14(1):23697. PubMed ID: 39390005
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tuning of polarization sensitivity in closely stacked trilayer InAs/GaAs quantum dots induced by overgrowth dynamics.
    Tasco V; Usman M; De Giorgi M; Passaseo A
    Nanotechnology; 2014 Feb; 25(5):055207. PubMed ID: 24407042
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Epitaxial semiconductor quantum wires.
    Wu J; Chen YH; Wang ZG
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3300-14. PubMed ID: 19051875
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The growth of a low defect InAs HEMT structure on Si by using an AlGaSb buffer layer containing InSb quantum dots for dislocation termination.
    Ko KM; Seo JH; Kim DE; Lee ST; Noh YK; Kim MD; Oh JE
    Nanotechnology; 2009 Jun; 20(22):225201. PubMed ID: 19433876
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stacked GaAs quantum dots fabricated by refilling of self-organized nanoholes: optical properties and post-growth annealing.
    Polojärvi V; Schramm A; Guina M; Stemmann A; Heyn C
    Nanotechnology; 2011 Mar; 22(10):105603. PubMed ID: 21289401
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The determination of the size and shape of buried InAs/InP quantum dots by transmission electron microscopy.
    Robertson MD; Bennett JC; Webb AM; Corbett JM; Raymond S; Poole PJ
    Ultramicroscopy; 2005 Jun; 103(3):205-19. PubMed ID: 15850708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temperature-Dependent Site Control of InAs/GaAs (001) Quantum Dots Using a Scanning Tunneling Microscopy Tip During Growth.
    Toujyou T; Tsukamoto S
    Nanoscale Res Lett; 2010 Oct; 5(12):1930-4. PubMed ID: 21170138
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-particle and collective excitations in quantum wires made up of vertically stacked quantum dots: zero magnetic field.
    Kushwaha MS
    J Chem Phys; 2011 Sep; 135(12):124704. PubMed ID: 21974549
    [TBL] [Abstract][Full Text] [Related]  

  • 30. First-step nucleation growth dependence of InAs/InGaAs/InP quantum dot formation in two-step growth.
    Yin Z; Tang X; Zhang J; Deny S; Teng J; Du A; Chin MK
    Nanotechnology; 2008 Feb; 19(8):085603. PubMed ID: 21730727
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formation of nanogaps in InAs nanowires by selectively etching embedded InP segments.
    Schukfeh MI; Storm K; Hansen A; Thelander C; Hinze P; Beyer A; Weimann T; Samuelson L; Tornow M
    Nanotechnology; 2014 Nov; 25(46):465306. PubMed ID: 25360747
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Large array of single, site-controlled InAs quantum dots fabricated by UV-nanoimprint lithography and molecular beam epitaxy.
    Schramm A; Tommila J; Strelow C; Hakkarainen TV; Tukiainen A; Dumitrescu M; Mews A; Kipp T; Guina M
    Nanotechnology; 2012 May; 23(17):175701. PubMed ID: 22481170
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation on Sb distribution for InSb/InAs sub-monolayer heterostructure using TEM techniques.
    Khan AA; Herrera M; Fernández-Delgado N; Reyes DF; Pizarro J; Repiso E; Krier A; Molina SI
    Nanotechnology; 2020 Jan; 31(2):025706. PubMed ID: 31550683
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Density and size control of InP/GaInP quantum dots on GaAs substrate grown by gas source molecular beam epitaxy.
    Rödel R; Bauer A; Kremling S; Reitzenstein S; Höfling S; Kamp M; Worschech L; Forchel A
    Nanotechnology; 2012 Jan; 23(1):015605. PubMed ID: 22156168
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strain, size, and composition of InAs quantum sticks embedded in InP determined via grazing incidence x-ray anomalous diffraction.
    Létoublon A; Favre-Nicolin V; Renevier H; Proietti MG; Monat C; Gendry M; Marty O; Priester C
    Phys Rev Lett; 2004 May; 92(18):186101. PubMed ID: 15169510
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photoreflectance study of strained GaAsN/GaAs T-junction quantum wires grown by metal-organic vapor phase epitaxy.
    Klangtakai P; Sanorpim S; Onabe K
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10584-8. PubMed ID: 22408953
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantum-confinement effects in InAs-InP core-shell nanowires.
    Zanolli Z; Pistol ME; Fröberg LE; Samuelson L
    J Phys Condens Matter; 2007 Jul; 19(29):295219. PubMed ID: 21483071
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrical control of a laterally ordered InAs/InP quantum dash array.
    Alén B; Fuster D; Fernández-Martínez I; Martínez-Pastor J; González Y; Briones F; González L
    Nanotechnology; 2009 Nov; 20(47):475202. PubMed ID: 19858562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Column-by-column compositional mapping by Z-contrast imaging.
    Molina SI; Sales DL; Galindo PL; Fuster D; González Y; Alén B; González L; Varela M; Pennycook SJ
    Ultramicroscopy; 2009 Jan; 109(2):172-6. PubMed ID: 19062188
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The evolution of self-assembled InAs/GaAs(001) quantum dots grown by growth-interrupted molecular beam epitaxy.
    Balzarotti A
    Nanotechnology; 2008 Dec; 19(50):505701. PubMed ID: 19942778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.