These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 21832737)

  • 1. The role of the gas species on the formation of carbon nanotubes during thermal chemical vapour deposition.
    Ohashi F; Chen GY; Stolojan V; Silva SR
    Nanotechnology; 2008 Nov; 19(44):445605. PubMed ID: 21832737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Process synthesis and optimization for the production of carbon nanostructures.
    Iyuke SE; Mamvura TA; Liu K; Sibanda V; Meyyappan M; Varadan VK
    Nanotechnology; 2009 Sep; 20(37):375602. PubMed ID: 19706958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-area synthesis of carbon nanofibres at room temperature.
    Boskovic BO; Stolojan V; Khan RU; Haq S; Silva SR
    Nat Mater; 2002 Nov; 1(3):165-8. PubMed ID: 12618804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ observation of the growth mechanisms of carbon nanotubes under diverse reaction conditions.
    Sharma R; Rez P; Treacy MM; Stuart SJ
    J Electron Microsc (Tokyo); 2005 Jun; 54(3):231-7. PubMed ID: 16123070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of single-walled carbon nanotube growth parameters using alcohol catalytic chemical vapour deposition.
    Unalan HE; Chhowalla M
    Nanotechnology; 2005 Oct; 16(10):2153-63. PubMed ID: 20817989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-chip deposition of carbon nanotubes using CMOS microhotplates.
    Haque MS; Teo KB; Rupensinghe NL; Ali SZ; Haneef I; Maeng S; Park J; Udrea F; Milne WI
    Nanotechnology; 2008 Jan; 19(2):025607. PubMed ID: 21817549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of surface species in chemical vapor deposited carbon nanotubes.
    Lysaght AC; Chiu WK
    Nanotechnology; 2009 Mar; 20(11):115605. PubMed ID: 19420445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of carbon nanotubes on diamond-like carbon by the hot filament plasma-enhanced chemical vapor deposition method.
    Choi EC; Park YS; Hong B
    Micron; 2009; 40(5-6):612-6. PubMed ID: 19318258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring the carbon nanostructures grown on the surface of Ni-Al bimetallic nanoparticles in the gas phase.
    Kim WD; Ahn JY; Lee DG; Lee HW; Hong SW; Park HS; Kim SH
    J Colloid Interface Sci; 2011 Oct; 362(2):261-6. PubMed ID: 21757200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CVD growth of N-doped carbon nanotubes on silicon substrates and its mechanism.
    He M; Zhou S; Zhang J; Liu Z; Robinson C
    J Phys Chem B; 2005 May; 109(19):9275-9. PubMed ID: 16852108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic-scale imaging of carbon nanofibre growth.
    Helveg S; López-Cartes C; Sehested J; Hansen PL; Clausen BS; Rostrup-Nielsen JR; Abild-Pedersen F; Nørskov JK
    Nature; 2004 Jan; 427(6973):426-9. PubMed ID: 14749826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors governing the growth mode of carbon nanotubes on carbon-based substrates.
    Kim KJ; Yu WR; Youk JH; Lee J
    Phys Chem Chem Phys; 2012 Oct; 14(40):14041-8. PubMed ID: 22990211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cobalt ultrathin film catalyzed ethanol chemical vapor deposition of single-walled carbon nanotubes.
    Huang L; White B; Sfeir MY; Huang M; Huang HX; Wind S; Hone J; O'Brien S
    J Phys Chem B; 2006 Jun; 110(23):11103-9. PubMed ID: 16771372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-yield synthesis of single-wall carbon nanotubes on MCM41 using catalytic chemical vapor deposition of acetylene.
    Ramesh P; Kishi N; Sugai T; Shinohara H
    J Phys Chem B; 2006 Jan; 110(1):130-5. PubMed ID: 16471510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron silicide root formation in carbon nanotubes grown by microwave PECVD.
    AuBuchon JF; Daraio C; Chen LH; Gapin AI; Jin S
    J Phys Chem B; 2005 Dec; 109(51):24215-9. PubMed ID: 16375415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of the Fe-Co interaction on the growth of multiwall carbon nanotubes.
    Li Z; Dervishi E; Xu Y; Ma X; Saini V; Biris AS; Little R; Biris AR; Lupu D
    J Chem Phys; 2008 Aug; 129(7):074712. PubMed ID: 19044797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of carbon nanotubes on cobalt catalyst film using electron cyclotron resonance chemical vapour deposition without thermal heating.
    Wu WT; Chen KH; Hsu CM
    Nanotechnology; 2006 Sep; 17(18):4542-7. PubMed ID: 21727575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low temperature growth of double walled carbon nanotubes using FeMoMgO catalyst.
    Somanathan T; Gokulakrishnan N; Pandurangan A
    J Nanosci Nanotechnol; 2014 Apr; 14(4):3272-6. PubMed ID: 24734768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.