These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 21832748)

  • 1. Programming voltage reduction in phase change memory cells with tungsten trioxide bottom heating layer/electrode.
    Rao F; Song Z; Gong Y; Wu L; Feng S; Chen B
    Nanotechnology; 2008 Nov; 19(44):445706. PubMed ID: 21832748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance improvement of phase-change memory cell using AlSb3Te and atomic layer deposition TiO2 buffer layer.
    Song S; Song Z; Peng C; Gao L; Gu Y; Zhang Z; Lv Y; Yao D; Wu L; Liu B
    Nanoscale Res Lett; 2013 Feb; 8(1):77. PubMed ID: 23414571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SiO2 doped Ge2Sb2Te5 thin films with high thermal efficiency for applications in phase change random access memory.
    Ryu SW; Lyeo HK; Lee JH; Ahn YB; Kim GH; Kim CH; Kim SG; Lee SH; Kim KY; Kim JH; Kim W; Hwang CS; Kim HJ
    Nanotechnology; 2011 Jun; 22(25):254005. PubMed ID: 21572208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of thermoelectric phenomena on phase-change memory performance metrics and scaling.
    Lee J; Asheghi M; Goodson KE
    Nanotechnology; 2012 May; 23(20):205201. PubMed ID: 22543873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy-Efficient Phase-Change Memory with Graphene as a Thermal Barrier.
    Ahn C; Fong SW; Kim Y; Lee S; Sood A; Neumann CM; Asheghi M; Goodson KE; Pop E; Wong HS
    Nano Lett; 2015 Oct; 15(10):6809-14. PubMed ID: 26308280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of side bottom-electrode-contact for high density phase-change memory array.
    Liu Y; Song Z; Liu B; Xu J; Chen H; Zhang C; Wu G; Feng S
    J Nanosci Nanotechnol; 2012 Oct; 12(10):7939-43. PubMed ID: 23421160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic structure of Te/Sb/Ge and Sb/Te/Ge multi layer films using photoelectron spectroscopy.
    Baeck JH; Ann YK; Jeong KH; Cho MH; Ko DH; Oh JH; Jeong H
    J Am Chem Soc; 2009 Sep; 131(38):13634-8. PubMed ID: 19725494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials.
    Hegedüs J; Elliott SR
    Nat Mater; 2008 May; 7(5):399-405. PubMed ID: 18362909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ti-Sb-Te alloy: a candidate for fast and long-life phase-change memory.
    Xia M; Zhu M; Wang Y; Song Z; Rao F; Wu L; Cheng Y; Song S
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7627-34. PubMed ID: 25805549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of high-density In(3)Sb(1)Te(2) phase change nanoarray on glass-fabric reinforced flexible substrate.
    Yoon JM; Shin DO; Yin Y; Seo HK; Kim D; Kim YI; Jin JH; Kim YT; Bae BS; Kim SO; Lee JY
    Nanotechnology; 2012 Jun; 23(25):255301. PubMed ID: 22652564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast switching in nanoscale phase-change random access memory with superlattice-like structures.
    Loke D; Shi L; Wang W; Zhao R; Yang H; Ng LT; Lim KG; Chong TC; Yeo YC
    Nanotechnology; 2011 Jun; 22(25):254019. PubMed ID: 21572204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 12-state multi-level cell storage implemented in a 128 Mb phase change memory chip.
    Song Z; Cai D; Cheng Y; Wang L; Lv S; Xin T; Feng G
    Nanoscale; 2021 Jun; 13(23):10455-10461. PubMed ID: 34137747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The geometric effect and programming current reduction in cylindrical-shaped phase change memory.
    Li Y; Hwang CH; Li TY; Cheng HW
    Nanotechnology; 2009 Jul; 20(28):285701. PubMed ID: 19550022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural transformation of Sb-based high-speed phase-change material.
    Matsunaga T; Kojima R; Yamada N; Kubota Y; Kifune K
    Acta Crystallogr B; 2012 Dec; 68(Pt 6):559-70. PubMed ID: 23165592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the Origin of Low-Energy Operation Characteristics for Cr
    Hatayama S; Yamamoto T; Mori S; Song YH; Sutou Y
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44604-44613. PubMed ID: 36149674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal conductivity of a single Bi₀.₅Sb₁.₅Te₃ single-crystalline nanowire.
    Li L; Jin C; Xu S; Yang J; Du H; Li G
    Nanotechnology; 2014 Oct; 25(41):415704. PubMed ID: 25249271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation study on heat conduction of a nanoscale phase-change random access memory cell.
    Kim J; Song KB
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3474-8. PubMed ID: 17252792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Use of wolfram trioxide for setting off preparations of nucleic acids].
    Shved AD; Lylo VV
    Tsitol Genet; 1978; 12(1):70-2. PubMed ID: 684815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward structural/chemical cotailoring of phase-change Ge-Sb-Te in a transmission electron microscope.
    Zhang W; Kim JG; Zheng WT; Cui XQ; Kim YJ; Song SA
    J Microsc; 2015 Mar; 257(3):253-5. PubMed ID: 25623497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the RF ablation-induced 'oven effect': the importance of background tissue thermal conductivity on tissue heating.
    Liu Z; Ahmed M; Weinstein Y; Yi M; Mahajan RL; Goldberg SN
    Int J Hyperthermia; 2006 Jun; 22(4):327-42. PubMed ID: 16754353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.