These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 21832758)

  • 1. High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy.
    Sahin O; Erina N
    Nanotechnology; 2008 Nov; 19(44):445717. PubMed ID: 21832758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harnessing bifurcations in tapping-mode atomic force microscopy to calibrate time-varying tip-sample force measurements.
    Sahin O
    Rev Sci Instrum; 2007 Oct; 78(10):103707. PubMed ID: 17979428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast, High Resolution, and Wide Modulus Range Nanomechanical Mapping with Bimodal Tapping Mode.
    Kocun M; Labuda A; Meinhold W; Revenko I; Proksch R
    ACS Nano; 2017 Oct; 11(10):10097-10105. PubMed ID: 28953363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An atomic force microscope tip designed to measure time-varying nanomechanical forces.
    Sahin O; Magonov S; Su C; Quate CF; Solgaard O
    Nat Nanotechnol; 2007 Aug; 2(8):507-14. PubMed ID: 18654349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially resolved frequency-dependent elasticity measured with pulsed force microscopy and nanoindentation.
    Sweers KK; van der Werf KO; Bennink ML; Subramaniam V
    Nanoscale; 2012 Mar; 4(6):2072-7. PubMed ID: 22331128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A torsional resonance mode AFM for in-plane tip surface interactions.
    Huang L; Su C
    Ultramicroscopy; 2004 Aug; 100(3-4):277-85. PubMed ID: 15231320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping the mechanical properties of cholesterol-containing supported lipid bilayers with nanoscale spatial resolution.
    Shamitko-Klingensmith N; Molchanoff KM; Burke KA; Magnone GJ; Legleiter J
    Langmuir; 2012 Sep; 28(37):13411-22. PubMed ID: 22924735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dynamic model of the jump-to phenomenon during AFM analysis.
    Bowen J; Cheneler D
    Langmuir; 2012 Dec; 28(50):17273-86. PubMed ID: 23157559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy.
    Loganathan M; Bristow DA
    Rev Sci Instrum; 2014 Apr; 85(4):043703. PubMed ID: 24784614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanomechanical characterization by double-pass force-distance mapping.
    Dagdas YS; Aslan MN; Tekinay AB; Guler MO; Dâna A
    Nanotechnology; 2011 Jul; 22(29):295704. PubMed ID: 21673384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale composition mapping of segregation in micelles with tapping-mode atomic force microscopy.
    Aytun T; Mutaf OF; el-Atwani OJ; Ow-Yang CW
    Langmuir; 2008 Dec; 24(24):14183-7. PubMed ID: 19053651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tapping mode imaging and measurements with an inverted atomic force microscope.
    Chan SS; Green JB
    Langmuir; 2006 Jul; 22(15):6701-6. PubMed ID: 16831016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving tapping mode atomic force microscopy with piezoelectric cantilevers.
    Rogers B; Manning L; Sulchek T; Adams JD
    Ultramicroscopy; 2004 Aug; 100(3-4):267-76. PubMed ID: 15231319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of drive frequency and set point amplitude on tapping forces in atomic force microscopy: simulation and experiment.
    Legleiter J
    Nanotechnology; 2009 Jun; 20(24):245703. PubMed ID: 19471079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bimodal frequency-modulated atomic force microscopy with small cantilevers.
    Dietz C; Schulze M; Voss A; Riesch C; Stark RW
    Nanoscale; 2015 Feb; 7(5):1849-56. PubMed ID: 25522181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peak forces in high-resolution imaging of soft matter in liquid.
    Guzman HV; Perrino AP; Garcia R
    ACS Nano; 2013 Apr; 7(4):3198-204. PubMed ID: 23521043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broad modulus range nanomechanical mapping by magnetic-drive soft probes.
    Meng X; Zhang H; Song J; Fan X; Sun L; Xie H
    Nat Commun; 2017 Dec; 8(1):1944. PubMed ID: 29208894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topography imaging with a heated atomic force microscope cantilever in tapping mode.
    Park K; Lee J; Zhang ZM; King WP
    Rev Sci Instrum; 2007 Apr; 78(4):043709. PubMed ID: 17477672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncertainty quantification in nanomechanical measurements using the atomic force microscope.
    Wagner R; Moon R; Pratt J; Shaw G; Raman A
    Nanotechnology; 2011 Nov; 22(45):455703. PubMed ID: 21992899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling tip-sample interaction forces during a single tap for improved topography and mechanical property imaging of soft materials by AFM.
    Parlak Z; Hadizadeh R; Balantekin M; Levent Degertekin F
    Ultramicroscopy; 2009 Aug; 109(9):1121-5. PubMed ID: 19493622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.