BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 21832991)

  • 21. Mechanisms of altered Ca²⁺ handling in heart failure.
    Luo M; Anderson ME
    Circ Res; 2013 Aug; 113(6):690-708. PubMed ID: 23989713
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure.
    Ai X; Curran JW; Shannon TR; Bers DM; Pogwizd SM
    Circ Res; 2005 Dec; 97(12):1314-22. PubMed ID: 16269653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NS5806 partially restores action potential duration but fails to ameliorate calcium transient dysfunction in a computational model of canine heart failure.
    Maleckar MM; Lines GT; Koivumäki JT; Cordeiro JM; Calloe K
    Europace; 2014 Nov; 16 Suppl 4():iv46-iv55. PubMed ID: 25362170
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intracellular devastation in heart failure.
    Del Monte F; Hajjar RJ
    Heart Fail Rev; 2008 Jun; 13(2):151-62. PubMed ID: 18347978
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Loss of AKAP150 promotes pathological remodelling and heart failure propensity by disrupting calcium cycling and contractile reserve.
    Li L; Li J; Drum BM; Chen Y; Yin H; Guo X; Luckey SW; Gilbert ML; McKnight GS; Scott JD; Santana LF; Liu Q
    Cardiovasc Res; 2017 Feb; 113(2):147-159. PubMed ID: 27856611
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Elevated ventricular wall stress disrupts cardiomyocyte t-tubule structure and calcium homeostasis.
    Frisk M; Ruud M; Espe EK; Aronsen JM; Røe ÅT; Zhang L; Norseng PA; Sejersted OM; Christensen GA; Sjaastad I; Louch WE
    Cardiovasc Res; 2016 Oct; 112(1):443-51. PubMed ID: 27226008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Calcium Homeostasis and Kinetics in Heart Failure.
    Davlouros PA; Gkizas V; Vogiatzi C; Giannopoulos G; Alexopoulos D; Deftereos S
    Med Chem; 2016; 12(2):151-61. PubMed ID: 26411602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Subcellular structures and function of myocytes impaired during heart failure are restored by cardiac resynchronization therapy.
    Sachse FB; Torres NS; Savio-Galimberti E; Aiba T; Kass DA; Tomaselli GF; Bridge JH
    Circ Res; 2012 Feb; 110(4):588-97. PubMed ID: 22253411
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CaMKIIδC Drives Early Adaptive Ca
    Ljubojevic-Holzer S; Herren AW; Djalinac N; Voglhuber J; Morotti S; Holzer M; Wood BM; Abdellatif M; Matzer I; Sacherer M; Radulovic S; Wallner M; Ivanov M; Wagner S; Sossalla S; von Lewinski D; Pieske B; Brown JH; Sedej S; Bossuyt J; Bers DM
    Circ Res; 2020 Oct; 127(9):1159-1178. PubMed ID: 32821022
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Increased cardiomyocyte function and Ca2+ transients in mice during early congestive heart failure.
    Mørk HK; Sjaastad I; Sande JB; Periasamy M; Sejersted OM; Louch WE
    J Mol Cell Cardiol; 2007 Aug; 43(2):177-86. PubMed ID: 17574269
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic inhibition alters subcellular calcium release patterns in rat ventricular myocytes: implications for defective excitation-contraction coupling during cardiac ischemia and failure.
    Fukumoto GH; Lamp ST; Motter C; Bridge JH; Garfinkel A; Goldhaber JI
    Circ Res; 2005 Mar; 96(5):551-7. PubMed ID: 15718501
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mitochondrial calcium overload is a key determinant in heart failure.
    Santulli G; Xie W; Reiken SR; Marks AR
    Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11389-94. PubMed ID: 26217001
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The relationship between arrhythmogenesis and impaired contractility in heart failure: role of altered ryanodine receptor function.
    Belevych AE; Terentyev D; Terentyeva R; Nishijima Y; Sridhar A; Hamlin RL; Carnes CA; Györke S
    Cardiovasc Res; 2011 Jun; 90(3):493-502. PubMed ID: 21273243
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prolonged oxidative stress inverts the cardiac force-frequency relation: role of altered calcium handling and myofilament calcium responsiveness.
    Luo J; Xuan YT; Gu Y; Prabhu SD
    J Mol Cell Cardiol; 2006 Jan; 40(1):64-75. PubMed ID: 16288776
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Destructive Role of TMAO in T-Tubule and Excitation-Contraction Coupling in the Adult Cardiomyocytes.
    Jin B; Ji F; Zuo A; Liu H; Qi L; He Y; Wang Q; Zhao P
    Int Heart J; 2020 Mar; 61(2):355-363. PubMed ID: 32173700
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Na+]i handling in the failing human heart.
    Pieske B; Houser SR
    Cardiovasc Res; 2003 Mar; 57(4):874-86. PubMed ID: 12650866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Effect of carvedilol on ryanodine receptor in heart failure].
    Li R; Yi QJ; Qian YR; Liu XY
    Zhonghua Er Ke Za Zhi; 2005 Aug; 43(8):603-7. PubMed ID: 16191273
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeting myocardial beta-adrenergic receptor signaling and calcium cycling for heart failure gene therapy.
    Pleger ST; Boucher M; Most P; Koch WJ
    J Card Fail; 2007 Jun; 13(5):401-14. PubMed ID: 17602988
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Calcium kinetics in the progression of heart failure].
    Roncon-Albuquerque Júnior R; Leite-Moreira AF
    Rev Port Cardiol; 2004 May; 23 Suppl 2():II25-40. PubMed ID: 15222248
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Models of excitation-contraction coupling in cardiac ventricular myocytes.
    Jafri MS
    Methods Mol Biol; 2012; 910():309-35. PubMed ID: 22821602
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.