BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

505 related articles for article (PubMed ID: 21832992)

  • 1. Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals.
    Dellomonaco C; Clomburg JM; Miller EN; Gonzalez R
    Nature; 2011 Aug; 476(7360):355-9. PubMed ID: 21832992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of medium-chain length (C6-C10) fuels and chemicals via β-oxidation reversal in Escherichia coli.
    Kim S; Clomburg JM; Gonzalez R
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):465-75. PubMed ID: 25645093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A synthetic biology approach to engineer a functional reversal of the β-oxidation cycle.
    Clomburg JM; Vick JE; Blankschien MD; Rodríguez-Moyá M; Gonzalez R
    ACS Synth Biol; 2012 Nov; 1(11):541-54. PubMed ID: 23656231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial production of short-chain alkanes.
    Choi YJ; Lee SY
    Nature; 2013 Oct; 502(7472):571-4. PubMed ID: 24077097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combination of type II fatty acid biosynthesis enzymes and thiolases supports a functional β-oxidation reversal.
    Clomburg JM; Contreras SC; Chou A; Siegel JB; Gonzalez R
    Metab Eng; 2018 Jan; 45():11-19. PubMed ID: 29146470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Escherichia coli for the synthesis of short- and medium-chain α,β-unsaturated carboxylic acids.
    Kim S; Cheong S; Gonzalez R
    Metab Eng; 2016 Jul; 36():90-98. PubMed ID: 26996381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated engineering of β-oxidation reversal and ω-oxidation pathways for the synthesis of medium chain ω-functionalized carboxylic acids.
    Clomburg JM; Blankschien MD; Vick JE; Chou A; Kim S; Gonzalez R
    Metab Eng; 2015 Mar; 28():202-212. PubMed ID: 25638687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Escherichia coli for production of biodiesel from fatty alcohols and acetyl-CoA.
    Guo D; Pan H; Li X
    Appl Microbiol Biotechnol; 2015 Sep; 99(18):7805-12. PubMed ID: 26205521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico assessment of the metabolic capabilities of an engineered functional reversal of the β-oxidation cycle for the synthesis of longer-chain (C≥4) products.
    Cintolesi A; Clomburg JM; Gonzalez R
    Metab Eng; 2014 May; 23():100-15. PubMed ID: 24569100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of malonyl-CoA metabolism by acyl-acyl carrier protein and beta-ketoacyl-acyl carrier protein synthases in Escherichia coli.
    Heath RJ; Rock CO
    J Biol Chem; 1995 Jun; 270(26):15531-8. PubMed ID: 7797547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of β-oxidation to leverage thioesterases for production of 2-heptanone, 2-nonanone and 2-undecanone.
    Yan Q; Simmons TR; Cordell WT; Hernández Lozada NJ; Breckner CJ; Chen X; Jindra MA; Pfleger BF
    Metab Eng; 2020 Sep; 61():335-343. PubMed ID: 32479802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determinants of substrate specificity in a catalytically diverse family of acyl-ACP thioesterases from plants.
    Kalinger RS; Rowland O
    BMC Plant Biol; 2023 Jan; 23(1):1. PubMed ID: 36588156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xanthomonas campestris RpfB is a fatty Acyl-CoA ligase required to counteract the thioesterase activity of the RpfF diffusible signal factor (DSF) synthase.
    Bi H; Yu Y; Dong H; Wang H; Cronan JE
    Mol Microbiol; 2014 Jul; 93(2):262-75. PubMed ID: 24866092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Escherichia coli MG1655 strains to produce long chain fatty acids by engineering fatty acid synthesis (FAS) metabolism.
    Jeon E; Lee S; Won JI; Han SO; Kim J; Lee J
    Enzyme Microb Technol; 2011 Jun; 49(1):44-51. PubMed ID: 22112270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of artificial micro-aerobic metabolism for energy- and carbon-efficient synthesis of medium chain fatty acids in Escherichia coli.
    Wu J; Wang Z; Duan X; Zhou P; Liu P; Pang Z; Wang Y; Wang X; Li W; Dong M
    Metab Eng; 2019 May; 53():1-13. PubMed ID: 30684584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial β-oxidation of saturated fatty acids in humans.
    Adeva-Andany MM; Carneiro-Freire N; Seco-Filgueira M; Fernández-Fernández C; Mouriño-Bayolo D
    Mitochondrion; 2019 May; 46():73-90. PubMed ID: 29551309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of enantiopure (S)-3-hydroxybutyrate from glucose through the inverted fatty acid β-oxidation pathway by metabolically engineered Escherichia coli.
    Gulevich AY; Skorokhodova AY; Sukhozhenko AV; Debabov VG
    J Biotechnol; 2017 Feb; 244():16-24. PubMed ID: 28131860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilizing Alcohol for Alkane Biosynthesis by Introducing a Fatty Alcohol Dehydrogenase.
    Sui YA; Kishino S; Maruyama S; Ito M; Muramatsu M; Obata S; Ogawa J
    Appl Environ Microbiol; 2022 Dec; 88(23):e0126422. PubMed ID: 36416567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escherichia coli enoyl-acyl carrier protein reductase (FabI) supports efficient operation of a functional reversal of β-oxidation cycle.
    Vick JE; Clomburg JM; Blankschien MD; Chou A; Kim S; Gonzalez R
    Appl Environ Microbiol; 2015 Feb; 81(4):1406-16. PubMed ID: 25527535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peroxisomal lipid degradation via beta- and alpha-oxidation in mammals.
    Mannaerts GP; Van Veldhoven PP; Casteels M
    Cell Biochem Biophys; 2000; 32 Spring():73-87. PubMed ID: 11330072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.