BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

505 related articles for article (PubMed ID: 21832992)

  • 21. A synthetic O2 -tolerant butanol pathway exploiting native fatty acid biosynthesis in Escherichia coli.
    Pásztor A; Kallio P; Malatinszky D; Akhtar MK; Jones PR
    Biotechnol Bioeng; 2015 Jan; 112(1):120-8. PubMed ID: 24981220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pseudomonas aeruginosa directly shunts β-oxidation degradation intermediates into de novo fatty acid biosynthesis.
    Yuan Y; Leeds JA; Meredith TC
    J Bacteriol; 2012 Oct; 194(19):5185-96. PubMed ID: 22753057
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of fatty acid elongation and initiation by acyl-acyl carrier protein in Escherichia coli.
    Heath RJ; Rock CO
    J Biol Chem; 1996 Jan; 271(4):1833-6. PubMed ID: 8567624
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acetyl-CoA-dependent chain elongation of fatty acids in Escherichia coli K-12.
    Nishimaki T; Yamanaka H; Mizugaki M
    J Biochem; 1986 Feb; 99(2):365-74. PubMed ID: 3516982
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of acetate formation pathway and long chain fatty acid CoA-ligase on the free fatty acid production in E. coli expressing acy-ACP thioesterase from Ricinus communis.
    Li M; Zhang X; Agrawal A; San KY
    Metab Eng; 2012 Jul; 14(4):380-7. PubMed ID: 22480945
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient odd straight medium chain free fatty acid production by metabolically engineered Escherichia coli.
    Wu H; San KY
    Biotechnol Bioeng; 2014 Nov; 111(11):2209-19. PubMed ID: 24889416
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The peroxisomal Acyl-CoA thioesterase Pte1p from Saccharomyces cerevisiae is required for efficient degradation of short straight chain and branched chain fatty acids.
    Maeda I; Delessert S; Hasegawa S; Seto Y; Zuber S; Poirier Y
    J Biol Chem; 2006 Apr; 281(17):11729-35. PubMed ID: 16490786
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2 degrees Adh) as a bifunctional alcohol dehydrogenase--acetyl-CoA reductive thioesterase.
    Burdette D; Zeikus JG
    Biochem J; 1994 Aug; 302 ( Pt 1)(Pt 1):163-70. PubMed ID: 8068002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly Active C
    Hernández Lozada NJ; Lai RY; Simmons TR; Thomas KA; Chowdhury R; Maranas CD; Pfleger BF
    ACS Synth Biol; 2018 Sep; 7(9):2205-2215. PubMed ID: 30064208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chimeric Fatty Acyl-Acyl Carrier Protein Thioesterases Provide Mechanistic Insight into Enzyme Specificity and Expression.
    Ziesack M; Rollins N; Shah A; Dusel B; Webster G; Silver PA; Way JC
    Appl Environ Microbiol; 2018 May; 84(10):. PubMed ID: 29549102
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tuning of acyl-ACP thioesterase activity directed for tailored fatty acid synthesis.
    Feng Y; Zhang Y; Wang Y; Liu J; Liu Y; Cao X; Xue S
    Appl Microbiol Biotechnol; 2018 Apr; 102(7):3173-3182. PubMed ID: 29470618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases.
    Zhang X; Li M; Agrawal A; San KY
    Metab Eng; 2011 Nov; 13(6):713-22. PubMed ID: 22001432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [1-butanol synthesis by Escherichia coli cells through butyryl-CoA formation by heterologous enzymes of clostridia and native enzymes of fatty acid beta-oxidation].
    Gulevich AIu; Skorokhodova AIu; Morzhakova AA; Antonova SV; Sukhozhenko AV; Shakulov RS; Debabov VG
    Prikl Biokhim Mikrobiol; 2012; 48(4):383-8. PubMed ID: 23035570
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced production of branched-chain fatty acids by replacing β-ketoacyl-(acyl-carrier-protein) synthase III (FabH).
    Jiang W; Jiang Y; Bentley GJ; Liu D; Xiao Y; Zhang F
    Biotechnol Bioeng; 2015 Aug; 112(8):1613-22. PubMed ID: 25788017
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased Accumulation of Medium-Chain Fatty Acids by Dynamic Degradation of Long-Chain Fatty Acids in
    Hussain SA; Garcia A; Khan MAK; Nosheen S; Zhang Y; Koffas MAG; Garre V; Lee SC; Song Y
    Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32764225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic engineering of Escherichia coli for production of fatty acid short-chain esters through combination of the fatty acid and 2-keto acid pathways.
    Guo D; Zhu J; Deng Z; Liu T
    Metab Eng; 2014 Mar; 22():69-75. PubMed ID: 24440714
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reverse β-oxidation pathways for efficient chemical production.
    Tarasava K; Lee SH; Chen J; Köpke M; Jewett MC; Gonzalez R
    J Ind Microbiol Biotechnol; 2022 Apr; 49(2):. PubMed ID: 35218187
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria.
    Lan EI; Liao JC
    Proc Natl Acad Sci U S A; 2012 Apr; 109(16):6018-23. PubMed ID: 22474341
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A systematic optimization of medium chain fatty acid biosynthesis via the reverse beta-oxidation cycle in Escherichia coli.
    Wu J; Zhang X; Xia X; Dong M
    Metab Eng; 2017 May; 41():115-124. PubMed ID: 28392294
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intrinsic Ability of the β-Oxidation Pathway To Produce Bioactive Styrylpyrones.
    Huang Y; Hoefgen S; Gherlone F; Valiante V
    Angew Chem Int Ed Engl; 2022 Aug; 61(34):e202206851. PubMed ID: 35726672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.