BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 21833324)

  • 1. Growth of Acidithiobacillus Ferrooxidans ATCC 23270 in Thiosulfate Under Oxygen-Limiting Conditions Generates Extracellular Sulfur Globules by Means of a Secreted Tetrathionate Hydrolase.
    Beard S; Paradela A; Albar JP; Jerez CA
    Front Microbiol; 2011; 2():79. PubMed ID: 21833324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rates of iron(III) reduction coupled to elemental sulfur or tetrathionate oxidation by acidophilic microorganisms and detection of sulfur intermediates.
    Breuker A; Schippers A
    Res Microbiol; 2024; 175(1-2):104110. PubMed ID: 37544391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sole cysteine residue (Cys301) of tetrathionate hydrolase from Acidithiobacillus ferrooxidans does not play a role in enzyme activity.
    Kanao T; Nakayama H; Kato M; Kamimura K
    Biosci Biotechnol Biochem; 2014; 78(12):2030-5. PubMed ID: 25144400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ferrous iron production mediated by tetrathionate hydrolase in tetrathionate-, sulfur-, and iron-grown Acidithiobacillus ferrooxidans ATCC 23270 cells.
    Sugio T; Taha TM; Takeuchi F
    Biosci Biotechnol Biochem; 2009 Jun; 73(6):1381-6. PubMed ID: 19502725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tetrathionate hydrolase from the acidophilic microorganisms.
    Kanao T
    Front Microbiol; 2024; 15():1338669. PubMed ID: 38348185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recombinant expression using the tetrathionate hydrolase promoter in Acidithiobacillus ferrooxidans.
    Kanao T; Kunihisa T; Ohgimoto S; Ito M; Murakami C; Nakayama H; Tamura T; Kamimura K
    J Biosci Bioeng; 2023 Mar; 135(3):176-181. PubMed ID: 36635106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallization and preliminary X-ray diffraction analysis of tetrathionate hydrolase from Acidithiobacillus ferrooxidans.
    Kanao T; Kosaka M; Yoshida K; Nakayama H; Tamada T; Kuroki R; Yamada H; Takada J; Kamimura K
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Jun; 69(Pt 6):692-4. PubMed ID: 23722856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction mechanism of tetrathionate hydrolysis based on the crystal structure of tetrathionate hydrolase from Acidithiobacillus ferrooxidans.
    Kanao T; Hase N; Nakayama H; Yoshida K; Nishiura K; Kosaka M; Kamimura K; Hirano Y; Tamada T
    Protein Sci; 2021 Feb; 30(2):328-338. PubMed ID: 33103311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of hydrogen sulfide from tetrathionate by the iron-oxidizing bacterium Thiobacillus ferrooxidans NASF-1.
    Ng KY; Kamimura K; Sugio T
    J Biosci Bioeng; 2000; 90(2):193-8. PubMed ID: 16232841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tetrathionate and Elemental Sulfur Shape the Isotope Composition of Sulfate in Acid Mine Drainage.
    Balci N; Brunner B; Turchyn AV
    Front Microbiol; 2017; 8():1564. PubMed ID: 28861071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a gene encoding a tetrathionate hydrolase in Acidithiobacillus ferrooxidans.
    Kanao T; Kamimura K; Sugio T
    J Biotechnol; 2007 Oct; 132(1):16-22. PubMed ID: 17904676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can Sulfate Be the First Dominant Aqueous Sulfur Species Formed in the Oxidation of Pyrite by
    Borilova S; Mandl M; Zeman J; Kucera J; Pakostova E; Janiczek O; Tuovinen OH
    Front Microbiol; 2018; 9():3134. PubMed ID: 30619202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are there multiple mechanisms of anaerobic sulfur oxidation with ferric iron in Acidithiobacillus ferrooxidans?
    Kucera J; Pakostova E; Lochman J; Janiczek O; Mandl M
    Res Microbiol; 2016 Jun; 167(5):357-66. PubMed ID: 26924114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tetrathionate-forming thiosulfate dehydrogenase from the acidophilic, chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans.
    Kikumoto M; Nogami S; Kanao T; Takada J; Kamimura K
    Appl Environ Microbiol; 2013 Jan; 79(1):113-20. PubMed ID: 23064330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced sulfur compound oxidation by Thiobacillus caldus.
    Hallberg KB; Dopson M; Lindström EB
    J Bacteriol; 1996 Jan; 178(1):6-11. PubMed ID: 8550443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction and characterization of tetH overexpression and knockout strains of Acidithiobacillus ferrooxidans.
    Yu Y; Liu X; Wang H; Li X; Lin J
    J Bacteriol; 2014 Jun; 196(12):2255-64. PubMed ID: 24727223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polythionate degradation by tetrathionate hydrolase of
    de Jong GAH; Hazeu W; Bos P; Kuenen JG
    Microbiology (Reading); 1997 Feb; 143(2):499-504. PubMed ID: 33711857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of oxidation of inorganic sulfur compounds by thiosulfate-grown Thiobacillus thiooxidans.
    Masau RJ; Oh JK; Suzuki I
    Can J Microbiol; 2001 Apr; 47(4):348-58. PubMed ID: 11358175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic sulfur metabolism coupled to dissimilatory iron reduction in the extremophile Acidithiobacillus ferrooxidans.
    Osorio H; Mangold S; Denis Y; Ñancucheo I; Esparza M; Johnson DB; Bonnefoy V; Dopson M; Holmes DS
    Appl Environ Microbiol; 2013 Apr; 79(7):2172-81. PubMed ID: 23354702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recombinant tetrathionate hydrolase from Acidithiobacillus ferrooxidans requires exposure to acidic conditions for proper folding.
    Kanao T; Matsumoto C; Shiraga K; Yoshida K; Takada J; Kamimura K
    FEMS Microbiol Lett; 2010 Aug; 309(1):43-7. PubMed ID: 20546308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.