BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 21833406)

  • 41. Extraction of organic compounds with room temperature ionic liquids.
    Poole CF; Poole SK
    J Chromatogr A; 2010 Apr; 1217(16):2268-86. PubMed ID: 19766228
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Unusual nanostructured ZnO particles from an ionic liquid precursor.
    Li Z; Luan Y; Mu T; Chen G
    Chem Commun (Camb); 2009 Mar; (10):1258-60. PubMed ID: 19240892
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A concept of supported amino acid ionic liquids and their application in metal scavenging and heterogeneous catalysis.
    Chen W; Zhang Y; Zhu L; Lan J; Xie R; You J
    J Am Chem Soc; 2007 Nov; 129(45):13879-86. PubMed ID: 17941636
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preparation and catalytic evaluation of ruthenium-nickel dendrimer encapsulated nanoparticles via intradendrimer redox displacement of nickel nanoparticles.
    Marvin KA; Thadani NN; Atkinson CA; Keller EL; Stevenson KJ
    Chem Commun (Camb); 2012 Jun; 48(50):6289-91. PubMed ID: 22610070
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrochemical synthesis of indium(0) nanoparticles in haloindate(III) ionic liquids.
    Estager J; Nockemann P; Seddon KR; Srinivasan G; Swadźba-Kwaśny M
    ChemSusChem; 2012 Jan; 5(1):117-24. PubMed ID: 22086860
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ionic liquids as amphiphile self-assembly media.
    Greaves TL; Drummond CJ
    Chem Soc Rev; 2008 Aug; 37(8):1709-26. PubMed ID: 18648691
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Alkyne hydroarylation in ionic liquids catalyzed by palladium(II) complexes.
    Biffis A; Gazzola L; Tubaro C; Basato M
    ChemSusChem; 2010 Jul; 3(7):834-9. PubMed ID: 20623724
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ionic liquid mediated synthesis and surface modification of multifunctional mesoporous Eu:GdF3 nanoparticles for biomedical applications.
    Rodriguez-Liviano S; Nuñez NO; Rivera-Fernández S; de la Fuente JM; Ocaña M
    Langmuir; 2013 Mar; 29(10):3411-8. PubMed ID: 23402647
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery.
    Park YJ; Park JW; Jun CH
    Acc Chem Res; 2008 Feb; 41(2):222-34. PubMed ID: 18247521
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chiral ionic liquid monolayer-stabilized gold nanoparticles: synthesis, self-assembly, and application to SERS.
    Bai X; Li X; Zheng L
    Langmuir; 2010 Jul; 26(14):12209-14. PubMed ID: 20499920
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydrodeoxygenation of lignin-derived phenols into alkanes by using nanoparticle catalysts combined with Brønsted acidic ionic liquids.
    Yan N; Yuan Y; Dykeman R; Kou Y; Dyson PJ
    Angew Chem Int Ed Engl; 2010 Jul; 49(32):5549-53. PubMed ID: 20593435
    [No Abstract]   [Full Text] [Related]  

  • 52. Gold nanoparticles: past, present, and future.
    Sardar R; Funston AM; Mulvaney P; Murray RW
    Langmuir; 2009 Dec; 25(24):13840-51. PubMed ID: 19572538
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Imidazolium ionic liquids as promoters and stabilising agents for the preparation of metal(0) nanoparticles by reduction and decomposition of organometallic complexes.
    Prechtl MH; Campbell PS; Scholten JD; Fraser GB; Machado G; Santini CC; Dupont J; Chauvin Y
    Nanoscale; 2010 Dec; 2(12):2601-6. PubMed ID: 20936213
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recent developments of ionic liquids in oligosaccharide synthesis: the sweet side of ionic liquids.
    Galan MC; Jones RA; Tran AT
    Carbohydr Res; 2013 Jun; 375():35-46. PubMed ID: 23685038
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis.
    Liu J; Chen L; Cui H; Zhang J; Zhang L; Su CY
    Chem Soc Rev; 2014 Aug; 43(16):6011-61. PubMed ID: 24871268
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A rapid and simple route for the synthesis of lead and palladium nanoparticles in tetrazolium based ionic liquid.
    Singh P; Kumar P; Kumari K; Sharma P; Mozumdar S; Chandra R
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Feb; 78(2):909-12. PubMed ID: 21176885
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A new bio-inspired route to metal-nanoparticle-based heterogeneous catalysts.
    Debecker DP; Faure C; Meyre ME; Derré A; Gaigneaux EM
    Small; 2008 Oct; 4(10):1806-12. PubMed ID: 18844300
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Carboxylated polymers functionalized by cyclodextrins for the stabilization of highly efficient rhodium(0) nanoparticles in aqueous phase catalytic hydrogenation.
    Noël S; Léger B; Herbois R; Ponchel A; Tilloy S; Wenz G; Monflier E
    Dalton Trans; 2012 Nov; 41(43):13359-63. PubMed ID: 23007202
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Unique role of ionic liquid in microwave-assisted synthesis of monodisperse magnetite nanoparticles.
    Hu H; Yang H; Huang P; Cui D; Peng Y; Zhang J; Lu F; Lian J; Shi D
    Chem Commun (Camb); 2010 Jun; 46(22):3866-8. PubMed ID: 20449521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.