BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1464 related articles for article (PubMed ID: 21834528)

  • 1. Enantioselective fluorescent sensors: a tale of BINOL.
    Pu L
    Acc Chem Res; 2012 Feb; 45(2):150-63. PubMed ID: 21834528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous Determination of Concentration and Enantiomeric Composition in Fluorescent Sensing.
    Pu L
    Acc Chem Res; 2017 Apr; 50(4):1032-1040. PubMed ID: 28287702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of the fluorescent properties of partially hydrogenated 1,1'-bi-2-naphthol-amine molecules and their use for enantioselective fluorescent recognition.
    Yu S; DeBerardinis AM; Turlington M; Pu L
    J Org Chem; 2011 Apr; 76(8):2814-9. PubMed ID: 21405012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A convenient fluorescent method to simultaneously determine the enantiomeric composition and concentration of functional chiral amines.
    Huang Z; Yu S; Zhao X; Wen K; Xu Y; Yu X; Xu Y; Pu L
    Chemistry; 2014 Dec; 20(50):16458-61. PubMed ID: 25348091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudoenantiomeric fluorescent sensors in a chiral assay.
    Yu S; Pu L
    J Am Chem Soc; 2010 Dec; 132(50):17698-700. PubMed ID: 21121601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optically active BINOL core-based phenyleneethynylene dendrimers for the enantioselective fluorescent recognition of amino alcohols.
    Pugh VJ; Hu QS; Zuo X; Lewis FD; Pu L
    J Org Chem; 2001 Sep; 66(18):6136-40. PubMed ID: 11529742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A chiral porous metal-organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols.
    Wanderley MM; Wang C; Wu CD; Lin W
    J Am Chem Soc; 2012 Jun; 134(22):9050-3. PubMed ID: 22607498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational design of a fluorescent sensor to simultaneously determine both the enantiomeric composition and the concentration of chiral functional amines.
    Wen K; Yu S; Huang Z; Chen L; Xiao M; Yu X; Pu L
    J Am Chem Soc; 2015 Apr; 137(13):4517-24. PubMed ID: 25790271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macrocyclic bisbinaphthyl fluorophores and their acyclic analogues: signal amplification and chiral recognition.
    Li ZB; Lin J; Zhang HC; Sabat M; Hyacinth M; Pu L
    J Org Chem; 2004 Sep; 69(19):6284-93. PubMed ID: 15357587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantioselective recognition of mandelic acid by a 3,6-dithiophen-2-yl-9H-carbazole-based chiral fluorescent bisboronic acid sensor.
    Wu Y; Guo H; James TD; Zhao J
    J Org Chem; 2011 Jul; 76(14):5685-95. PubMed ID: 21619028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances of BINOL-based sensors for enantioselective fluorescence recognition.
    Yu F; Chen Y; Jiang H; Wang X
    Analyst; 2020 Oct; 145(21):6769-6812. PubMed ID: 32960189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantioselective recognition of α-hydroxycarboxylic acids and N-Boc-amino acids by counterion-displacement assays with a chiral nickel(II) complex.
    He X; Zhang Q; Wang W; Lin L; Liu X; Feng X
    Org Lett; 2011 Feb; 13(4):804-7. PubMed ID: 21247141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescent sensors for the enantioselective recognition of mandelic acid: signal amplification by dendritic branching.
    Xu MH; Lin J; Hu QS; Pu L
    J Am Chem Soc; 2002 Nov; 124(47):14239-46. PubMed ID: 12440923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid optical methods for enantiomeric excess analysis: from enantioselective indicator displacement assays to exciton-coupled circular dichroism.
    Jo HH; Lin CY; Anslyn EV
    Acc Chem Res; 2014 Jul; 47(7):2212-21. PubMed ID: 24892802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantioselective fluorescent recognition of mandelic acid by unsymmetrical salalen and salan sensors.
    Yang X; Liu X; Shen K; Fu Y; Zhang M; Zhu C; Cheng Y
    Org Biomol Chem; 2011 Sep; 9(17):6011-21. PubMed ID: 21743928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A pair of chiral fluorescent sensors for enantioselective recognition of mandelate in water.
    Xu KX; Kong HJ; Zu FL; Yang L; Wang CJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():811-5. PubMed ID: 24157333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly enantioselective fluorescent recognition of serine and other amino acid derivatives.
    Liu HL; Zhu HP; Hou XL; Pu L
    Org Lett; 2010 Sep; 12(18):4172-5. PubMed ID: 20726589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantioselective gel collapsing: a new means of visual chiral sensing.
    Chen X; Huang Z; Chen SY; Li K; Yu XQ; Pu L
    J Am Chem Soc; 2010 Jun; 132(21):7297-9. PubMed ID: 20446686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amphiphilic Polymer-Based Fluorescent Probe for Enantioselective Recognition of Amino Acids in Immiscible Water and Organic Phases.
    Nian S; Pu L
    Chemistry; 2017 Dec; 23(71):18066-18073. PubMed ID: 29069528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Syntheses and highly enantioselective fluorescent recognition of α-aminocarboxylic acid anions using chiral oxacalix[2]arene[2]bisbinaphthes.
    Xu K; Jiao S; Yao W; Xie E; Tang B; Wang C
    Chirality; 2012 Aug; 24(8):646-51. PubMed ID: 22619133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 74.