These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 21834658)

  • 1. Optimization of treatment strategy used during shockwave lithotripsy to maximize stone fragmentation efficiency.
    Yong DZ; Lipkin ME; Simmons WN; Sankin G; Albala DM; Zhong P; Preminger GM
    J Endourol; 2011 Sep; 25(9):1507-11. PubMed ID: 21834658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy.
    Zhou Y; Cocks FH; Preminger GM; Zhong P
    J Urol; 2004 Jul; 172(1):349-54. PubMed ID: 15201809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progressive increase of lithotripter output produces better in-vivo stone comminution.
    Maloney ME; Marguet CG; Zhou Y; Kang DE; Sung JC; Springhart WP; Madden J; Zhong P; Preminger GM
    J Endourol; 2006 Sep; 20(9):603-6. PubMed ID: 16999607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of stress waves and cavitation in stone comminution in shock wave lithotripsy.
    Zhu S; Cocks FH; Preminger GM; Zhong P
    Ultrasound Med Biol; 2002 May; 28(5):661-71. PubMed ID: 12079703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Broad vs Narrow Focal Width Lithotripter Fields.
    Xing Y; Chen TT; Simmons WN; Sankin G; Cocks FH; Lipkin ME; Preminger GM; Zhong P
    J Endourol; 2017 May; 31(5):502-509. PubMed ID: 28340536
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Rassweiler J; Rieker P; Pecha R; Dressel M; Rassweiler-Seyfried MC
    J Endourol; 2022 Feb; 36(2):266-272. PubMed ID: 34314251
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of output voltage distribution on stone comminution efficiency during shockwave lithotripsy in renal or ureteropelvic junction stones: a preliminary study.
    You D; Park J; Hong B; Park HK
    Scand J Urol Nephrol; 2010 Sep; 44(4):236-41. PubMed ID: 20446817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shockwave frequency affects fragmentation in a kidney stone model.
    Weir MJ; Tariq N; Honey RJ
    J Endourol; 2000 Sep; 14(7):547-50. PubMed ID: 11030533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of a modified acoustic lens for electromagnetic shock wave lithotripters in a swine model.
    Mancini JG; Neisius A; Smith N; Sankin G; Astroza GM; Lipkin ME; Simmons WN; Preminger GM; Zhong P
    J Urol; 2013 Sep; 190(3):1096-101. PubMed ID: 23485509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treatment time reduction using tandem shockwaves for lithotripsy: an in vivo study.
    Fernández F; Fernández G; Loske AM
    J Endourol; 2009 Aug; 23(8):1247-53. PubMed ID: 19580352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent developments in SWL physics research.
    Zhong P; Xi X; Zhu S; Cocks FH; Preminger GM
    J Endourol; 1999 Nov; 13(9):611-7. PubMed ID: 10608511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Impact of Dust and Confinement on Fragmentation of Kidney Stones by Shockwave Lithotripsy in Tissue Phantoms.
    Randad A; Ahn J; Bailey MR; Kreider W; Harper JD; Sorensen MD; Maxwell AD
    J Endourol; 2019 May; 33(5):400-406. PubMed ID: 30595048
    [No Abstract]   [Full Text] [Related]  

  • 13. Shifting the Split Reflectors to Enhance Stone Fragmentation of Shock Wave Lithotripsy.
    Wang JC; Zhou Y
    Ultrasound Med Biol; 2016 Aug; 42(8):1876-89. PubMed ID: 27166016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled cavitation to augment SWL stone comminution: mechanistic insights in vitro.
    Duryea AP; Roberts WW; Cain CA; Hall TL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Feb; 60(2):301-9. PubMed ID: 23357904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-frequency setting for urinary stone fragmentation during shock wave lithotripsy: an in vitro study.
    Han CS; Vetter JM; Endicott R; Chevinsky M; Zafar A; Venkatesh R
    Urolithiasis; 2020 Aug; 48(4):369-375. PubMed ID: 31624905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial.
    Pace KT; Ghiculete D; Harju M; Honey RJ;
    J Urol; 2005 Aug; 174(2):595-9. PubMed ID: 16006908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CT Texture Analysis of Ex Vivo Renal Stones Predicts Ease of Fragmentation with Shockwave Lithotripsy.
    Cui HW; Devlies W; Ravenscroft S; Heers H; Freidin AJ; Cleveland RO; Ganeshan B; Turney BW
    J Endourol; 2017 Jul; 31(7):694-700. PubMed ID: 28474533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Percutaneous stone implantation in the pig kidney: a new animal model for lithotripsy research.
    Paterson RF; Lingeman JE; Evan AP; Connors BA; Williams JC; McAteer JA
    J Endourol; 2002 Oct; 16(8):543-7. PubMed ID: 12470460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimising an escalating shockwave amplitude treatment strategy to protect the kidney from injury during shockwave lithotripsy.
    Handa RK; McAteer JA; Connors BA; Liu Z; Lingeman JE; Evan AP
    BJU Int; 2012 Dec; 110(11 Pt C):E1041-7. PubMed ID: 22612388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppressing bubble shielding effect in shock wave lithotripsy by low intensity pulsed ultrasound.
    Wang JC; Zhou Y
    Ultrasonics; 2015 Jan; 55():65-74. PubMed ID: 25173067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.