BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 21834658)

  • 1. Optimization of treatment strategy used during shockwave lithotripsy to maximize stone fragmentation efficiency.
    Yong DZ; Lipkin ME; Simmons WN; Sankin G; Albala DM; Zhong P; Preminger GM
    J Endourol; 2011 Sep; 25(9):1507-11. PubMed ID: 21834658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy.
    Zhou Y; Cocks FH; Preminger GM; Zhong P
    J Urol; 2004 Jul; 172(1):349-54. PubMed ID: 15201809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progressive increase of lithotripter output produces better in-vivo stone comminution.
    Maloney ME; Marguet CG; Zhou Y; Kang DE; Sung JC; Springhart WP; Madden J; Zhong P; Preminger GM
    J Endourol; 2006 Sep; 20(9):603-6. PubMed ID: 16999607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of stress waves and cavitation in stone comminution in shock wave lithotripsy.
    Zhu S; Cocks FH; Preminger GM; Zhong P
    Ultrasound Med Biol; 2002 May; 28(5):661-71. PubMed ID: 12079703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Broad vs Narrow Focal Width Lithotripter Fields.
    Xing Y; Chen TT; Simmons WN; Sankin G; Cocks FH; Lipkin ME; Preminger GM; Zhong P
    J Endourol; 2017 May; 31(5):502-509. PubMed ID: 28340536
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Rassweiler J; Rieker P; Pecha R; Dressel M; Rassweiler-Seyfried MC
    J Endourol; 2022 Feb; 36(2):266-272. PubMed ID: 34314251
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of output voltage distribution on stone comminution efficiency during shockwave lithotripsy in renal or ureteropelvic junction stones: a preliminary study.
    You D; Park J; Hong B; Park HK
    Scand J Urol Nephrol; 2010 Sep; 44(4):236-41. PubMed ID: 20446817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shockwave frequency affects fragmentation in a kidney stone model.
    Weir MJ; Tariq N; Honey RJ
    J Endourol; 2000 Sep; 14(7):547-50. PubMed ID: 11030533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of a modified acoustic lens for electromagnetic shock wave lithotripters in a swine model.
    Mancini JG; Neisius A; Smith N; Sankin G; Astroza GM; Lipkin ME; Simmons WN; Preminger GM; Zhong P
    J Urol; 2013 Sep; 190(3):1096-101. PubMed ID: 23485509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treatment time reduction using tandem shockwaves for lithotripsy: an in vivo study.
    Fernández F; Fernández G; Loske AM
    J Endourol; 2009 Aug; 23(8):1247-53. PubMed ID: 19580352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent developments in SWL physics research.
    Zhong P; Xi X; Zhu S; Cocks FH; Preminger GM
    J Endourol; 1999 Nov; 13(9):611-7. PubMed ID: 10608511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Impact of Dust and Confinement on Fragmentation of Kidney Stones by Shockwave Lithotripsy in Tissue Phantoms.
    Randad A; Ahn J; Bailey MR; Kreider W; Harper JD; Sorensen MD; Maxwell AD
    J Endourol; 2019 May; 33(5):400-406. PubMed ID: 30595048
    [No Abstract]   [Full Text] [Related]  

  • 13. Shifting the Split Reflectors to Enhance Stone Fragmentation of Shock Wave Lithotripsy.
    Wang JC; Zhou Y
    Ultrasound Med Biol; 2016 Aug; 42(8):1876-89. PubMed ID: 27166016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled cavitation to augment SWL stone comminution: mechanistic insights in vitro.
    Duryea AP; Roberts WW; Cain CA; Hall TL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Feb; 60(2):301-9. PubMed ID: 23357904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-frequency setting for urinary stone fragmentation during shock wave lithotripsy: an in vitro study.
    Han CS; Vetter JM; Endicott R; Chevinsky M; Zafar A; Venkatesh R
    Urolithiasis; 2020 Aug; 48(4):369-375. PubMed ID: 31624905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial.
    Pace KT; Ghiculete D; Harju M; Honey RJ;
    J Urol; 2005 Aug; 174(2):595-9. PubMed ID: 16006908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CT Texture Analysis of Ex Vivo Renal Stones Predicts Ease of Fragmentation with Shockwave Lithotripsy.
    Cui HW; Devlies W; Ravenscroft S; Heers H; Freidin AJ; Cleveland RO; Ganeshan B; Turney BW
    J Endourol; 2017 Jul; 31(7):694-700. PubMed ID: 28474533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Percutaneous stone implantation in the pig kidney: a new animal model for lithotripsy research.
    Paterson RF; Lingeman JE; Evan AP; Connors BA; Williams JC; McAteer JA
    J Endourol; 2002 Oct; 16(8):543-7. PubMed ID: 12470460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimising an escalating shockwave amplitude treatment strategy to protect the kidney from injury during shockwave lithotripsy.
    Handa RK; McAteer JA; Connors BA; Liu Z; Lingeman JE; Evan AP
    BJU Int; 2012 Dec; 110(11 Pt C):E1041-7. PubMed ID: 22612388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppressing bubble shielding effect in shock wave lithotripsy by low intensity pulsed ultrasound.
    Wang JC; Zhou Y
    Ultrasonics; 2015 Jan; 55():65-74. PubMed ID: 25173067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.