BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

823 related articles for article (PubMed ID: 21834780)

  • 21. Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer's disease.
    Takahashi RH; Nagao T; Gouras GK
    Pathol Int; 2017 Apr; 67(4):185-193. PubMed ID: 28261941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Connecting the Dots: Linking the Biochemical to Morphological Transitions in Alzheimer's Disease.
    Baig AM
    ACS Chem Neurosci; 2019 Jan; 10(1):21-24. PubMed ID: 30160095
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physiological amyloid-beta clearance in the periphery and its therapeutic potential for Alzheimer's disease.
    Xiang Y; Bu XL; Liu YH; Zhu C; Shen LL; Jiao SS; Zhu XY; Giunta B; Tan J; Song WH; Zhou HD; Zhou XF; Wang YJ
    Acta Neuropathol; 2015 Oct; 130(4):487-99. PubMed ID: 26363791
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The interactions of p53 with tau and Aß as potential therapeutic targets for Alzheimer's disease.
    Jazvinšćak Jembrek M; Slade N; Hof PR; Šimić G
    Prog Neurobiol; 2018 Sep; 168():104-127. PubMed ID: 29733887
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probing amyloid-β pathology in transgenic Alzheimer's disease (tgArcSwe) mice using MALDI imaging mass spectrometry.
    Carlred L; Michno W; Kaya I; Sjövall P; Syvänen S; Hanrieder J
    J Neurochem; 2016 Aug; 138(3):469-78. PubMed ID: 27115712
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of CX3CR1 and Fractalkine Chemokines in Amyloid Beta Clearance and p-Tau Accumulation in Alzheimer's Disease (AD) Rodent Models: Is Fractalkine a Systemic Biomarker for AD?
    Merino JJ; Muñetón-Gómez V; Alvárez MI; Toledano-Díaz A
    Curr Alzheimer Res; 2016; 13(4):403-12. PubMed ID: 26567742
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Copper and Alzheimer's Disease.
    Mathys ZK; White AR
    Adv Neurobiol; 2017; 18():199-216. PubMed ID: 28889269
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relationship between ubiquilin-1 and BACE1 in human Alzheimer's disease and APdE9 transgenic mouse brain and cell-based models.
    Natunen T; Takalo M; Kemppainen S; Leskelä S; Marttinen M; Kurkinen KMA; Pursiheimo JP; Sarajärvi T; Viswanathan J; Gabbouj S; Solje E; Tahvanainen E; Pirttimäki T; Kurki M; Paananen J; Rauramaa T; Miettinen P; Mäkinen P; Leinonen V; Soininen H; Airenne K; Tanzi RE; Tanila H; Haapasalo A; Hiltunen M
    Neurobiol Dis; 2016 Jan; 85():187-205. PubMed ID: 26563932
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amyloid-β pathology is attenuated by tauroursodeoxycholic acid treatment in APP/PS1 mice after disease onset.
    Dionísio PA; Amaral JD; Ribeiro MF; Lo AC; D'Hooge R; Rodrigues CM
    Neurobiol Aging; 2015 Jan; 36(1):228-40. PubMed ID: 25443293
    [TBL] [Abstract][Full Text] [Related]  

  • 30. β-Amyloid and the Pathomechanisms of Alzheimer's Disease: A Comprehensive View.
    Penke B; Bogár F; Fülöp L
    Molecules; 2017 Oct; 22(10):. PubMed ID: 28994715
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Development of Disease-modifying Therapy for Alzheimer's Disease].
    Akiyama H
    Brain Nerve; 2016 Apr; 68(4):463-72. PubMed ID: 27056864
    [TBL] [Abstract][Full Text] [Related]  

  • 32. From alpha to omega with Abeta: targeting the multiple molecular appearances of the pathogenic peptide in Alzheimer's disease.
    De Kimpe L; Scheper W
    Curr Med Chem; 2010; 17(3):198-212. PubMed ID: 20214563
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer's disease.
    Guo T; Zhang D; Zeng Y; Huang TY; Xu H; Zhao Y
    Mol Neurodegener; 2020 Jul; 15(1):40. PubMed ID: 32677986
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Beta-amyloid sequelae in the eye: a critical review on its diagnostic significance and clinical relevance in Alzheimer's disease.
    Shah TM; Gupta SM; Chatterjee P; Campbell M; Martins RN
    Mol Psychiatry; 2017 Mar; 22(3):353-363. PubMed ID: 28093567
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rho-associated protein kinase 1 (ROCK1) is increased in Alzheimer's disease and ROCK1 depletion reduces amyloid-β levels in brain.
    Henderson BW; Gentry EG; Rush T; Troncoso JC; Thambisetty M; Montine TJ; Herskowitz JH
    J Neurochem; 2016 Aug; 138(4):525-31. PubMed ID: 27246255
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Therapeutic approaches to Alzheimer's disease through stimulating of non-amyloidogenic processing of amyloid precursor protein.
    Wang YQ; Qu DH; Wang K
    Eur Rev Med Pharmacol Sci; 2016 Jun; 20(11):2389-403. PubMed ID: 27338066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Peptides, Peptidomimetics, and Carbohydrate-Peptide Conjugates as Amyloidogenic Aggregation Inhibitors for Alzheimer's Disease.
    Ryan P; Patel B; Makwana V; Jadhav HR; Kiefel M; Davey A; Reekie TA; Rudrawar S; Kassiou M
    ACS Chem Neurosci; 2018 Jul; 9(7):1530-1551. PubMed ID: 29782794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dysregulated Metabolism of the Amyloid-β Protein and Therapeutic Approaches in Alzheimer Disease.
    Kikuchi K; Kidana K; Tatebe T; Tomita T
    J Cell Biochem; 2017 Dec; 118(12):4183-4190. PubMed ID: 28488760
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regional distribution of tau, beta-amyloid and beta-amyloid precursor protein in the Alzheimer's brain: a quantitative immunolabelling study.
    Shukla C; Bridges LR
    Neuroreport; 1999 Dec; 10(18):3785-9. PubMed ID: 10716210
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeting Abeta and tau in Alzheimer's disease, an early interim report.
    Golde TE; Petrucelli L; Lewis J
    Exp Neurol; 2010 Jun; 223(2):252-66. PubMed ID: 19716367
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 42.