BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 21834791)

  • 61. pH/Ultrasound Dual-Responsive Gas Generator for Ultrasound Imaging-Guided Therapeutic Inertial Cavitation and Sonodynamic Therapy.
    Feng Q; Zhang W; Yang X; Li Y; Hao Y; Zhang H; Hou L; Zhang Z
    Adv Healthc Mater; 2018 Mar; 7(5):. PubMed ID: 29141114
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Precision gas therapy using intelligent nanomedicine.
    He Q
    Biomater Sci; 2017 Oct; 5(11):2226-2230. PubMed ID: 28937694
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Endogenous Catalytic Generation of O
    Liu T; Zhang N; Wang Z; Wu M; Chen Y; Ma M; Chen H; Shi J
    ACS Nano; 2017 Sep; 11(9):9093-9102. PubMed ID: 28796487
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cancer Cell Membrane Camouflaged Cascade Bioreactor for Cancer Targeted Starvation and Photodynamic Therapy.
    Li SY; Cheng H; Xie BR; Qiu WX; Zeng JY; Li CX; Wan SS; Zhang L; Liu WL; Zhang XZ
    ACS Nano; 2017 Jul; 11(7):7006-7018. PubMed ID: 28665106
    [TBL] [Abstract][Full Text] [Related]  

  • 65. MRI-guided and ultrasound-triggered release of NO by advanced nanomedicine.
    Jin Z; Wen Y; Hu Y; Chen W; Zheng X; Guo W; Wang T; Qian Z; Su BL; He Q
    Nanoscale; 2017 Mar; 9(10):3637-3645. PubMed ID: 28247895
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy.
    Zhang C; Ni D; Liu Y; Yao H; Bu W; Shi J
    Nat Nanotechnol; 2017 May; 12(4):378-386. PubMed ID: 28068318
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Magnetic Nanoliposomes as in Situ Microbubble Bombers for Multimodality Image-Guided Cancer Theranostics.
    Liu Y; Yang F; Yuan C; Li M; Wang T; Chen B; Jin J; Zhao P; Tong J; Luo S; Gu N
    ACS Nano; 2017 Feb; 11(2):1509-1519. PubMed ID: 28045496
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Combination of nitric oxide and drug delivery systems: tools for overcoming drug resistance in chemotherapy.
    Kim J; Yung BC; Kim WJ; Chen X
    J Control Release; 2017 Oct; 263():223-230. PubMed ID: 28034787
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A human clinical trial using ultrasound and microbubbles to enhance gemcitabine treatment of inoperable pancreatic cancer.
    Dimcevski G; Kotopoulis S; Bjånes T; Hoem D; Schjøtt J; Gjertsen BT; Biermann M; Molven A; Sorbye H; McCormack E; Postema M; Gilja OH
    J Control Release; 2016 Dec; 243():172-181. PubMed ID: 27744037
    [TBL] [Abstract][Full Text] [Related]  

  • 70. An Implantable Depot That Can Generate Oxygen in Situ for Overcoming Hypoxia-Induced Resistance to Anticancer Drugs in Chemotherapy.
    Huang CC; Chia WT; Chung MF; Lin KJ; Hsiao CW; Jin C; Lim WH; Chen CC; Sung HW
    J Am Chem Soc; 2016 Apr; 138(16):5222-5. PubMed ID: 27075956
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Gasotransmitters in cancer: from pathophysiology to experimental therapy.
    Szabo C
    Nat Rev Drug Discov; 2016 Mar; 15(3):185-203. PubMed ID: 26678620
    [TBL] [Abstract][Full Text] [Related]  

  • 72. X-ray Radiation-Controlled NO-Release for On-Demand Depth-Independent Hypoxic Radiosensitization.
    Fan W; Bu W; Zhang Z; Shen B; Zhang H; He Q; Ni D; Cui Z; Zhao K; Bu J; Du J; Liu J; Shi J
    Angew Chem Int Ed Engl; 2015 Nov; 54(47):14026-30. PubMed ID: 26228648
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Understanding ultrasound induced sonoporation: definitions and underlying mechanisms.
    Lentacker I; De Cock I; Deckers R; De Smedt SC; Moonen CT
    Adv Drug Deliv Rev; 2014 Jun; 72():49-64. PubMed ID: 24270006
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Developing drug molecules for therapy with carbon monoxide.
    Romão CC; Blättler WA; Seixas JD; Bernardes GJ
    Chem Soc Rev; 2012 May; 41(9):3571-83. PubMed ID: 22349541
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Nutriepigenomics in Environmental-Associated Oxidative Stress.
    Rubio K; Hernández-Cruz EY; Rogel-Ayala DG; Sarvari P; Isidoro C; Barreto G; Pedraza-Chaverri J
    Antioxidants (Basel); 2023 Mar; 12(3):. PubMed ID: 36979019
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The Expanding Constellation of Histone Post-Translational Modifications in the Epigenetic Landscape.
    Cavalieri V
    Genes (Basel); 2021 Oct; 12(10):. PubMed ID: 34680990
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Targeting Histone Modifications in Breast Cancer: A Precise Weapon on the Way.
    Li W; Wu H; Sui S; Wang Q; Xu S; Pang D
    Front Cell Dev Biol; 2021; 9():736935. PubMed ID: 34595180
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The roles of inducible chromatin and transcriptional memory in cellular defense system responses to redox-active pollutants.
    Weinhouse C
    Free Radic Biol Med; 2021 Jul; 170():85-108. PubMed ID: 33789123
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Oxidative, Reductive, and Nitrosative Stress Effects on Epigenetics and on Posttranslational Modification of Enzymes in Cardiometabolic Diseases.
    Pérez-Torres I; Soto ME; Castrejón-Tellez V; Rubio-Ruiz ME; Manzano Pech L; Guarner-Lans V
    Oxid Med Cell Longev; 2020; 2020():8819719. PubMed ID: 33204398
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Antiproliferative chromone derivatives induce K562 cell death through endogenous and exogenous pathways.
    Jiao R; Xu F; Huang X; Li H; Liu W; Cao H; Zang L; Li Z; Hua H; Li D
    J Enzyme Inhib Med Chem; 2020 Dec; 35(1):759-772. PubMed ID: 32183548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.