These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 21834961)
1. Radial breathing mode of carbon nanotubes subjected to axial pressure. Lei XW; Ni QQ; Shi JX; Natsuki T Nanoscale Res Lett; 2011 Aug; 6(1):492. PubMed ID: 21834961 [TBL] [Abstract][Full Text] [Related]
2. Pressure dependence of the radial breathing mode of carbon nanotubes: the effect of fluid adsorption. Longhurst MJ; Quirke N Phys Rev Lett; 2007 Apr; 98(14):145503. PubMed ID: 17501286 [TBL] [Abstract][Full Text] [Related]
3. Vibration analysis of fluid-conveying double-walled carbon nanotubes based on nonlocal elastic theory. Lee HL; Chang WJ J Phys Condens Matter; 2009 Mar; 21(11):115302. PubMed ID: 21693915 [TBL] [Abstract][Full Text] [Related]
4. The environmental effect on the radial breathing mode of carbon nanotubes in water. Longhurst MJ; Quirke N J Chem Phys; 2006 Jun; 124(23):234708. PubMed ID: 16821942 [TBL] [Abstract][Full Text] [Related]
5. A computational modeling of Raman radial breathing-like mode frequencies of fullerene encapsulated inside single-walled carbon nanotubes. Ghavanloo E; Fazelzadeh SA; Rafii-Tabar H J Mol Model; 2017 Feb; 23(2):48. PubMed ID: 28154985 [TBL] [Abstract][Full Text] [Related]
6. Quantum-coupled radial-breathing oscillations in double-walled carbon nanotubes. Liu K; Hong X; Wu M; Xiao F; Wang W; Bai X; Ager JW; Aloni S; Zettl A; Wang E; Wang F Nat Commun; 2013; 4():1375. PubMed ID: 23340415 [TBL] [Abstract][Full Text] [Related]
7. The environmental effect on the radial breathing mode of carbon nanotubes. II. Shell model approximation for internally and externally adsorbed fluids. Longhurst MJ; Quirke N J Chem Phys; 2006 Nov; 125(18):184705. PubMed ID: 17115777 [TBL] [Abstract][Full Text] [Related]
8. Raman spectra of single walled carbon nanotubes at high temperatures: pretreating samples in a nitrogen atmosphere improves their thermal stability in air. Molina-Duarte J; Espinosa-Vega LI; Rodríguez AG; Guirado-López RA Phys Chem Chem Phys; 2017 Mar; 19(10):7215-7227. PubMed ID: 28233880 [TBL] [Abstract][Full Text] [Related]
9. A nonlocal shell model for mode transformation in single-walled carbon nanotubes. Shi MX; Li QM; Huang Y J Phys Condens Matter; 2009 Nov; 21(45):455301. PubMed ID: 21694006 [TBL] [Abstract][Full Text] [Related]
11. The frequency of cantilevered double-wall carbon nanotube resonators as a function of outer wall length. Kang JW; Choi YG; Kim Y; Jiang Q; Kwon OK; Hwang HJ J Phys Condens Matter; 2009 Sep; 21(38):385301. PubMed ID: 21832365 [TBL] [Abstract][Full Text] [Related]
12. DFT calculations of structures, (13)C NMR chemical shifts, and Raman RBM mode of simple models of small-diameter zigzag (4,0) carboxylated single-walled carbon nanotubes. Kupka T; Chełmecka E; Pasterny K; Stachów M; Stobiński L Magn Reson Chem; 2012 Feb; 50(2):142-51. PubMed ID: 22354820 [TBL] [Abstract][Full Text] [Related]
13. Interaction between single-wall carbon nanotubes and encapsulated C60 probed by resonance Raman spectroscopy. Joung SK; Okazaki T; Okada S; Iijima S Phys Chem Chem Phys; 2010 Jul; 12(28):8118-22. PubMed ID: 20526513 [TBL] [Abstract][Full Text] [Related]
14. Low temperature growth of double walled carbon nanotubes using FeMoMgO catalyst. Somanathan T; Gokulakrishnan N; Pandurangan A J Nanosci Nanotechnol; 2014 Apr; 14(4):3272-6. PubMed ID: 24734768 [TBL] [Abstract][Full Text] [Related]
15. Double-wall carbon nanotube-porphyrin supramolecular hybrid: synthesis and photophysical studies. Vizuete M; Gómez-Escalonilla MJ; Fierro JL; Atienzar P; García H; Langa F Chemphyschem; 2014 Jan; 15(1):100-8. PubMed ID: 24265140 [TBL] [Abstract][Full Text] [Related]
16. Calculation of Raman parameters of real-size zigzag (n, 0) single-walled carbon nanotubes using finite-size models. Kupka T; Stachów M; Stobiński L; Kaminský J Phys Chem Chem Phys; 2016 Sep; 18(36):25058-25069. PubMed ID: 27711454 [TBL] [Abstract][Full Text] [Related]
17. Effect of conjugation on the vibrational modes of a carbon nanotube dimer. Sharma D; Banerjee S; Pati SK; Jaggi N Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 246():118985. PubMed ID: 33035888 [TBL] [Abstract][Full Text] [Related]
18. Understanding the Electron-Doping Mechanism in Potassium-Intercalated Single-Walled Carbon Nanotubes. Kröckel C; Preciado-Rivas MR; Torres-Sánchez VA; Mowbray DJ; Reich S; Hauke F; Chacón-Torres JC; Hirsch A J Am Chem Soc; 2020 Feb; 142(5):2327-2337. PubMed ID: 31910007 [TBL] [Abstract][Full Text] [Related]
19. The Vibration of a Linear Carbon Chain in Carbon Nanotubes. Ding D; Zhao Y; Dong S; Yu P; Wang L; Zhao J Materials (Basel); 2017 Apr; 10(5):. PubMed ID: 28772840 [TBL] [Abstract][Full Text] [Related]
20. Quantitative analysis of the effect of reabsorption on the Raman spectroscopy of distinct ( Li S; Wei X; Li L; Cui J; Yang D; Wang Y; Zhou W; Xie S; Hirano A; Tanaka T; Kataura H; Liu H Anal Methods; 2020 May; 12(18):2376-2384. PubMed ID: 32930263 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]