These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 21835011)

  • 1. Identification of specificity determining residues in peptide recognition domains using an information theoretic approach applied to large-scale binding maps.
    Yip KY; Utz L; Sitwell S; Hu X; Sidhu SS; Turk BE; Gerstein M; Kim PM
    BMC Biol; 2011 Aug; 9():53. PubMed ID: 21835011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why ligand cross-reactivity is high within peptide recognition domain families? A case study on human c-Src SH3 domain.
    He P; Wu W; Wang HD; Liao KL; Zhang W; Lv FL; Yang K
    J Theor Biol; 2014 Jan; 340():30-7. PubMed ID: 24021866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and reliable prediction of domain-peptide binding affinity using coarse-grained structure models.
    Tian F; Tan R; Guo T; Zhou P; Yang L
    Biosystems; 2013 Jul; 113(1):40-9. PubMed ID: 23665477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational analysis and prediction of the binding motif and protein interacting partners of the Abl SH3 domain.
    Hou T; Chen K; McLaughlin WA; Lu B; Wang W
    PLoS Comput Biol; 2006 Jan; 2(1):e1. PubMed ID: 16446784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of domain-peptide interaction interface: a case study on the amphiphysin-1 SH3 domain.
    Hou T; Zhang W; Case DA; Wang W
    J Mol Biol; 2008 Feb; 376(4):1201-14. PubMed ID: 18206907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding free energy landscape of domain-peptide interactions.
    Staneva I; Wallin S
    PLoS Comput Biol; 2011 Aug; 7(8):e1002131. PubMed ID: 21876662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cluster based prediction of PDZ-peptide interactions.
    Kundu K; Backofen R
    BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S5. PubMed ID: 24564547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidation of the binding preferences of peptide recognition modules: SH3 and PDZ domains.
    Teyra J; Sidhu SS; Kim PM
    FEBS Lett; 2012 Aug; 586(17):2631-7. PubMed ID: 22691579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of PDZ domain specificity, prediction of ligand affinity and rational design of super-binding peptides.
    Wiedemann U; Boisguerin P; Leben R; Leitner D; Krause G; Moelling K; Volkmer-Engert R; Oschkinat H
    J Mol Biol; 2004 Oct; 343(3):703-18. PubMed ID: 15465056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of Src homology 3 domain association with the proline-rich domain of dynamins: specificity, occlusion, and the effects of phosphorylation.
    Solomaha E; Szeto FL; Yousef MA; Palfrey HC
    J Biol Chem; 2005 Jun; 280(24):23147-56. PubMed ID: 15834155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional genomics of intracellular peptide recognition domains with combinatorial biology methods.
    Sidhu SS; Bader GD; Boone C
    Curr Opin Chem Biol; 2003 Feb; 7(1):97-102. PubMed ID: 12547433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based prediction of protein-peptide specificity in Rosetta.
    King CA; Bradley P
    Proteins; 2010 Dec; 78(16):3437-49. PubMed ID: 20954182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based prediction of the Saccharomyces cerevisiae SH3-ligand interactions.
    Fernandez-Ballester G; Beltrao P; Gonzalez JM; Song YH; Wilmanns M; Valencia A; Serrano L
    J Mol Biol; 2009 May; 388(4):902-16. PubMed ID: 19324052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro evolution of recognition specificity mediated by SH3 domains reveals target recognition rules.
    Panni S; Dente L; Cesareni G
    J Biol Chem; 2002 Jun; 277(24):21666-74. PubMed ID: 11929862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-based prediction of the peptide sequence space recognized by natural and synthetic PDZ domains.
    Smith CA; Kortemme T
    J Mol Biol; 2010 Sep; 402(2):460-74. PubMed ID: 20654621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A flexible docking procedure for the exploration of peptide binding selectivity to known structures and homology models of PDZ domains.
    Niv MY; Weinstein H
    J Am Chem Soc; 2005 Oct; 127(40):14072-9. PubMed ID: 16201829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intramolecular allosteric communication in dopamine D2 receptor revealed by evolutionary amino acid covariation.
    Sung YM; Wilkins AD; Rodriguez GJ; Wensel TG; Lichtarge O
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):3539-44. PubMed ID: 26979958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting protein-peptide interactions via a network-based motif sampler.
    Reiss DJ; Schwikowski B
    Bioinformatics; 2004 Aug; 20 Suppl 1():i274-82. PubMed ID: 15262809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural, functional, and bioinformatic studies demonstrate the crucial role of an extended peptide binding site for the SH3 domain of yeast Abp1p.
    Stollar EJ; Garcia B; Chong PA; Rath A; Lin H; Forman-Kay JD; Davidson AR
    J Biol Chem; 2009 Sep; 284(39):26918-27. PubMed ID: 19590096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of covariation in an SH3 domain sequence alignment: applications in tertiary contact prediction and the design of compensating hydrophobic core substitutions.
    Larson SM; Di Nardo AA; Davidson AR
    J Mol Biol; 2000 Oct; 303(3):433-46. PubMed ID: 11031119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.