These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 21835017)

  • 1. Serum-free microcarrier based production of replication deficient influenza vaccine candidate virus lacking NS1 using Vero cells.
    Chen A; Poh SL; Dietzsch C; Roethl E; Yan ML; Ng SK
    BMC Biotechnol; 2011 Aug; 11():81. PubMed ID: 21835017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microcarrier cell culture process for propagating rabies virus in Vero cells grown in a stirred bioreactor under fully animal component free conditions.
    Rourou S; van der Ark A; van der Velden T; Kallel H
    Vaccine; 2007 May; 25(19):3879-89. PubMed ID: 17307281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influenza viruses production: Evaluation of a novel avian cell line DuckCelt®-T17.
    Petiot E; Proust A; Traversier A; Durous L; Dappozze F; Gras M; Guillard C; Balloul JM; Rosa-Calatrava M
    Vaccine; 2018 May; 36(22):3101-3111. PubMed ID: 28571695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Promising IFN-Deficient System to Manufacture IFN-Sensitive Influenza Vaccine Virus.
    Chen C; Fan W; Li J; Zheng W; Zhang S; Yang L; Liu D; Liu W; Sun L
    Front Cell Infect Microbiol; 2018; 8():127. PubMed ID: 29765910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MDCK and Vero cells for influenza virus vaccine production: a one-to-one comparison up to lab-scale bioreactor cultivation.
    Genzel Y; Dietzsch C; Rapp E; Schwarzer J; Reichl U
    Appl Microbiol Biotechnol; 2010 Sep; 88(2):461-75. PubMed ID: 20617311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation of Vero cells to suspension growth for rabies virus production in different serum free media.
    Rourou S; Ben Zakkour M; Kallel H
    Vaccine; 2019 Nov; 37(47):6987-6995. PubMed ID: 31201054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serum-free influenza virus production avoiding washing steps and medium exchange in large-scale microcarrier culture.
    Genzel Y; Fischer M; Reichl U
    Vaccine; 2006 Apr; 24(16):3261-72. PubMed ID: 16472544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous influenza virus production in a tubular bioreactor system provides stable titers and avoids the "von Magnus effect".
    Tapia F; Wohlfarth D; Sandig V; Jordan I; Genzel Y; Reichl U
    PLoS One; 2019; 14(11):e0224317. PubMed ID: 31689309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Safety and immunogenicity of a replication-deficient H5N1 influenza virus vaccine lacking NS1.
    Nicolodi C; Groiss F; Kiselev O; Wolschek M; Seipelt J; Muster T
    Vaccine; 2019 Jun; 37(28):3722-3729. PubMed ID: 31155415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of Newcastle disease virus by Vero cells grown on cytodex 1 microcarriers in a 2-litre stirred tank bioreactor.
    Arifin MA; Mel M; Abdul Karim MI; Ideris A
    J Biomed Biotechnol; 2010; 2010():586363. PubMed ID: 20625497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MDCK cell line with inducible allele B NS1 expression propagates delNS1 influenza virus to high titres.
    van Wielink R; Harmsen MM; Martens DE; Peeters BP; Wijffels RH; Moormann RJ
    Vaccine; 2011 Sep; 29(40):6976-85. PubMed ID: 21787829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Live attenuated influenza viruses produced in a suspension process with avian AGE1.CR.pIX cells.
    Lohr V; Genzel Y; Jordan I; Katinger D; Mahr S; Sandig V; Reichl U
    BMC Biotechnol; 2012 Oct; 12():79. PubMed ID: 23110398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of microcarrier cell culture process for the inactivated enterovirus type 71 vaccine development.
    Wu SC; Liu CC; Lian WC
    Vaccine; 2004 Sep; 22(29-30):3858-64. PubMed ID: 15364432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Japanese encephalitis virus production in Vero cells with serum-free medium using a novel oscillating bioreactor.
    Toriniwa H; Komiya T
    Biologicals; 2007 Oct; 35(4):221-6. PubMed ID: 17400474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of yellow fever virus in microcarrier-based Vero cell cultures.
    Souza MC; Freire MS; Schulze EA; Gaspar LP; Castilho LR
    Vaccine; 2009 Oct; 27(46):6420-3. PubMed ID: 19559120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of reovirus type-1 and type-3 from Vero cells grown on solid and macroporous microcarriers.
    Berry JM; Barnabé N; Coombs KM; Butler M
    Biotechnol Bioeng; 1999 Jan; 62(1):12-9. PubMed ID: 10099508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudorabies virus production using a serum-free medium in fixed-bed bioreactors with low cell inoculum density.
    Nie J; Sun Y; Peng F; Han F; Yang Y; Liu X; Liu C; Li Y; Bai Z
    Biotechnol Lett; 2020 Dec; 42(12):2551-2560. PubMed ID: 32816175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification of rabies virus produced in Vero cells grown in serum free medium.
    Trabelsi K; Ben Zakour M; Kallel H
    Vaccine; 2019 Nov; 37(47):7052-7060. PubMed ID: 31300287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of suspension adapted Vero cell culture process technology for production of viral vaccines.
    Shen CF; Guilbault C; Li X; Elahi SM; Ansorge S; Kamen A; Gilbert R
    Vaccine; 2019 Nov; 37(47):6996-7002. PubMed ID: 31288997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioreactor production of rVSV-based vectors in Vero cell suspension cultures.
    Kiesslich S; Kim GN; Shen CF; Kang CY; Kamen AA
    Biotechnol Bioeng; 2021 Jul; 118(7):2649-2659. PubMed ID: 33837958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.