BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 21835278)

  • 1. Probing small molecule-protein interactions: A new perspective for functional proteomics.
    Lenz T; Fischer JJ; Dreger M
    J Proteomics; 2011 Dec; 75(1):100-15. PubMed ID: 21835278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dasatinib, imatinib and staurosporine capture compounds - Complementary tools for the profiling of kinases by Capture Compound Mass Spectrometry (CCMS).
    Fischer JJ; Dalhoff C; Schrey AK; Graebner OY; Michaelis S; Andrich K; Glinski M; Kroll F; Sefkow M; Dreger M; Koester H
    J Proteomics; 2011 Dec; 75(1):160-8. PubMed ID: 21664307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterization of molecular targets of natural products by mass spectrometry.
    Cheng KW; Wong CC; Wang M; He QY; Chen F
    Mass Spectrom Rev; 2010; 29(1):126-55. PubMed ID: 19319922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GDP-capture compound--a novel tool for the profiling of GTPases in pro- and eukaryotes by capture compound mass spectrometry (CCMS).
    Luo Y; Fischer JJ; Baessler OY; Schrey AK; Ungewiss J; Glinski M; Sefkow M; Dreger M; Koester H
    J Proteomics; 2010 Feb; 73(4):815-9. PubMed ID: 20026263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemistry-based functional proteomics for drug target deconvolution.
    Wang K; Yang T; Wu Q; Zhao X; Nice EC; Huang C
    Expert Rev Proteomics; 2012 Jun; 9(3):293-310. PubMed ID: 22809208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small Molecule Interactome Mapping by Photo-Affinity Labeling (SIM-PAL) to Identify Binding Sites of Small Molecules on a Proteome-Wide Scale.
    Flaxman HA; Miyamoto DK; Woo CM
    Curr Protoc Chem Biol; 2019 Dec; 11(4):e75. PubMed ID: 31763793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods for the elucidation of protein-small molecule interactions.
    McFedries A; Schwaid A; Saghatelian A
    Chem Biol; 2013 May; 20(5):667-73. PubMed ID: 23706633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the targets of biologically active small molecules using quantitative proteomics.
    Vendrell-Navarro G; Brockmeyer A; Waldmann H; Janning P; Ziegler S
    Methods Mol Biol; 2015; 1263():263-86. PubMed ID: 25618352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unbiased identification of protein-bait interactions using biochemical enrichment and quantitative proteomics.
    Ong SE
    Cold Spring Harb Protoc; 2010 Mar; 2010(3):pdb.prot5400. PubMed ID: 20194469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive identification of staurosporine-binding kinases in the hepatocyte cell line HepG2 using Capture Compound Mass Spectrometry (CCMS).
    Fischer JJ; Graebner Baessler OY; Dalhoff C; Michaelis S; Schrey AK; Ungewiss J; Andrich K; Jeske D; Kroll F; Glinski M; Sefkow M; Dreger M; Koester H
    J Proteome Res; 2010 Feb; 9(2):806-17. PubMed ID: 20028079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping the Small Molecule Interactome by Mass Spectrometry.
    Flaxman HA; Woo CM
    Biochemistry; 2018 Jan; 57(2):186-193. PubMed ID: 29083874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profiling of methyltransferases and other S-adenosyl-L-homocysteine-binding Proteins by Capture Compound Mass Spectrometry (CCMS).
    Lenz T; Poot P; Gräbner O; Glinski M; Weinhold E; Dreger M; Köster H
    J Vis Exp; 2010 Dec; (46):. PubMed ID: 21189471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New affinity probe targeting VEGF receptors for kinase inhibitor selectivity profiling by chemical proteomics.
    Ku X; Heinzlmeir S; Helm D; Médard G; Kuster B
    J Proteome Res; 2014 May; 13(5):2445-52. PubMed ID: 24712744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Profiling of methyltransferases and other S-Adenosyl-L-homocysteine-binding proteins by Capture Compound mass spectrometry.
    Lenz T; Poot P; Weinhold E; Dreger M
    Methods Mol Biol; 2012; 803():97-125. PubMed ID: 22065221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hide and seek: Identification and confirmation of small molecule protein targets.
    Ursu A; Waldmann H
    Bioorg Med Chem Lett; 2015 Aug; 25(16):3079-86. PubMed ID: 26115575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applying small molecule microarrays and resulting affinity probe cocktails for proteome profiling of mammalian cell lysates.
    Shi H; Uttamchandani M; Yao SQ
    Chem Asian J; 2011 Oct; 6(10):2803-15. PubMed ID: 21898842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional proteomics: protein-protein interactions in vivo.
    Monti M; Cozzolino M; Cozzolino F; Tedesco R; Pucci P
    Ital J Biochem; 2007 Dec; 56(4):310-4. PubMed ID: 19192633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SEC-TID: A Label-Free Method for Small-Molecule Target Identification.
    Salcius M; Bauer AJ; Hao Q; Li S; Tutter A; Raphael J; Jahnke W; Rondeau JM; Bourgier E; Tallarico J; Michaud GA
    J Biomol Screen; 2014 Jul; 19(6):917-27. PubMed ID: 24554445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass spectrometry and the search for moonlighting proteins.
    Jeffery CJ
    Mass Spectrom Rev; 2005; 24(6):772-82. PubMed ID: 15605385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studying epigenetic complexes and their inhibitors with the proteomics toolbox.
    Weigt D; Hopf C; Médard G
    Clin Epigenetics; 2016; 8():76. PubMed ID: 27437033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.