These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Hypophosphorylation of the Stiff N2B titin isoform raises cardiomyocyte resting tension in failing human myocardium. Borbély A; Falcao-Pires I; van Heerebeek L; Hamdani N; Edes I; Gavina C; Leite-Moreira AF; Bronzwaer JG; Papp Z; van der Velden J; Stienen GJ; Paulus WJ Circ Res; 2009 Mar; 104(6):780-6. PubMed ID: 19179657 [TBL] [Abstract][Full Text] [Related]
3. Excision of titin's cardiac PEVK spring element abolishes PKCalpha-induced increases in myocardial stiffness. Hudson BD; Hidalgo CG; Gotthardt M; Granzier HL J Mol Cell Cardiol; 2010 May; 48(5):972-8. PubMed ID: 20026128 [TBL] [Abstract][Full Text] [Related]
4. PKC phosphorylation of titin's PEVK element: a novel and conserved pathway for modulating myocardial stiffness. Hidalgo C; Hudson B; Bogomolovas J; Zhu Y; Anderson B; Greaser M; Labeit S; Granzier H Circ Res; 2009 Sep; 105(7):631-8, 17 p following 638. PubMed ID: 19679839 [TBL] [Abstract][Full Text] [Related]
5. Titin-isoform dependence of titin-actin interaction and its regulation by S100A1/Ca2+ in skinned myocardium. Fukushima H; Chung CS; Granzier H J Biomed Biotechnol; 2010; 2010():727239. PubMed ID: 20414336 [TBL] [Abstract][Full Text] [Related]
6. Changes in titin isoform expression in pacing-induced cardiac failure give rise to increased passive muscle stiffness. Wu Y; Bell SP; Trombitas K; Witt CC; Labeit S; LeWinter MM; Granzier H Circulation; 2002 Sep; 106(11):1384-9. PubMed ID: 12221057 [TBL] [Abstract][Full Text] [Related]
7. Protein kinase G modulates human myocardial passive stiffness by phosphorylation of the titin springs. Krüger M; Kötter S; Grützner A; Lang P; Andresen C; Redfield MM; Butt E; dos Remedios CG; Linke WA Circ Res; 2009 Jan; 104(1):87-94. PubMed ID: 19023132 [TBL] [Abstract][Full Text] [Related]
8. Deranged myofilament phosphorylation and function in experimental heart failure with preserved ejection fraction. Hamdani N; Bishu KG; von Frieling-Salewsky M; Redfield MM; Linke WA Cardiovasc Res; 2013 Mar; 97(3):464-71. PubMed ID: 23213108 [TBL] [Abstract][Full Text] [Related]
9. Metformin improves diastolic function in an HFpEF-like mouse model by increasing titin compliance. Slater RE; Strom JG; Methawasin M; Liss M; Gotthardt M; Sweitzer N; Granzier HL J Gen Physiol; 2019 Jan; 151(1):42-52. PubMed ID: 30567709 [TBL] [Abstract][Full Text] [Related]
10. Titin isoforms, extracellular matrix, and global chamber remodeling in experimental dilated cardiomyopathy: functional implications and mechanistic insight. Jaber WA; Maniu C; Krysiak J; Shapiro BP; Meyer DM; Linke WA; Redfield MM Circ Heart Fail; 2008 Sep; 1(3):192-9. PubMed ID: 19808289 [TBL] [Abstract][Full Text] [Related]
11. Differential changes in titin domain phosphorylation increase myofilament stiffness in failing human hearts. Kötter S; Gout L; Von Frieling-Salewsky M; Müller AE; Helling S; Marcus K; Dos Remedios C; Linke WA; Krüger M Cardiovasc Res; 2013 Sep; 99(4):648-56. PubMed ID: 23764881 [TBL] [Abstract][Full Text] [Related]
12. Crucial role for Ca2(+)/calmodulin-dependent protein kinase-II in regulating diastolic stress of normal and failing hearts via titin phosphorylation. Hamdani N; Krysiak J; Kreusser MM; Neef S; Dos Remedios CG; Maier LS; Krüger M; Backs J; Linke WA Circ Res; 2013 Feb; 112(4):664-74. PubMed ID: 23283722 [TBL] [Abstract][Full Text] [Related]
13. Protein kinase-A phosphorylates titin in human heart muscle and reduces myofibrillar passive tension. Krüger M; Linke WA J Muscle Res Cell Motil; 2006; 27(5-7):435-44. PubMed ID: 16897574 [TBL] [Abstract][Full Text] [Related]
15. Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. Nagueh SF; Shah G; Wu Y; Torre-Amione G; King NM; Lahmers S; Witt CC; Becker K; Labeit S; Granzier HL Circulation; 2004 Jul; 110(2):155-62. PubMed ID: 15238456 [TBL] [Abstract][Full Text] [Related]
16. Phosphorylation of titin modulates passive stiffness of cardiac muscle in a titin isoform-dependent manner. Fukuda N; Wu Y; Nair P; Granzier HL J Gen Physiol; 2005 Mar; 125(3):257-71. PubMed ID: 15738048 [TBL] [Abstract][Full Text] [Related]
17. Titin isoform switch in ischemic human heart disease. Neagoe C; Kulke M; del Monte F; Gwathmey JK; de Tombe PP; Hajjar RJ; Linke WA Circulation; 2002 Sep; 106(11):1333-41. PubMed ID: 12221049 [TBL] [Abstract][Full Text] [Related]
18. Insulin signaling regulates cardiac titin properties in heart development and diabetic cardiomyopathy. Krüger M; Babicz K; von Frieling-Salewsky M; Linke WA J Mol Cell Cardiol; 2010 May; 48(5):910-6. PubMed ID: 20184888 [TBL] [Abstract][Full Text] [Related]
19. Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Cazorla O; Freiburg A; Helmes M; Centner T; McNabb M; Wu Y; Trombitás K; Labeit S; Granzier H Circ Res; 2000 Jan 7-21; 86(1):59-67. PubMed ID: 10625306 [TBL] [Abstract][Full Text] [Related]
20. Developmental changes in passive stiffness and myofilament Ca2+ sensitivity due to titin and troponin-I isoform switching are not critically triggered by birth. Krüger M; Kohl T; Linke WA Am J Physiol Heart Circ Physiol; 2006 Aug; 291(2):H496-506. PubMed ID: 16679402 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]