These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 21835918)
1. Proteasomal dysfunction and endoplasmic reticulum stress enhance trafficking of prion protein aggregates through the secretory pathway and increase accumulation of pathologic prion protein. Nunziante M; Ackermann K; Dietrich K; Wolf H; Gädtke L; Gilch S; Vorberg I; Groschup M; Schätzl HM J Biol Chem; 2011 Sep; 286(39):33942-53. PubMed ID: 21835918 [TBL] [Abstract][Full Text] [Related]
2. Prion-Associated Neurodegeneration Causes Both Endoplasmic Reticulum Stress and Proteasome Impairment in a Murine Model of Spontaneous Disease. Otero A; Betancor M; Eraña H; Fernández Borges N; Lucas JJ; Badiola JJ; Castilla J; Bolea R Int J Mol Sci; 2021 Jan; 22(1):. PubMed ID: 33466523 [TBL] [Abstract][Full Text] [Related]
3. The retention of prion protein in the endoplasmic reticulum prevents N2A cells from proteasome inhibition-induced cytotoxicity. Fang S; Wang R; Liu H; Zhuang W; Wang Z; Zhang J; Pei L; Liu Y; Su Y Biochem Biophys Res Commun; 2017 Sep; 491(2):500-507. PubMed ID: 28669732 [TBL] [Abstract][Full Text] [Related]
4. Protection from cytosolic prion protein toxicity by modulation of protein translocation. Rane NS; Yonkovich JL; Hegde RS EMBO J; 2004 Nov; 23(23):4550-9. PubMed ID: 15526034 [TBL] [Abstract][Full Text] [Related]
5. Trapping prion protein in the endoplasmic reticulum impairs PrPC maturation and prevents PrPSc accumulation. Cardinale A; Filesi I; Vetrugno V; Pocchiari M; Sy MS; Biocca S J Biol Chem; 2005 Jan; 280(1):685-94. PubMed ID: 15513919 [TBL] [Abstract][Full Text] [Related]
7. Critical significance of the region between Helix 1 and 2 for efficient dominant-negative inhibition by conversion-incompetent prion protein. Taguchi Y; Mistica AM; Kitamoto T; Schätzl HM PLoS Pathog; 2013; 9(6):e1003466. PubMed ID: 23825952 [TBL] [Abstract][Full Text] [Related]
8. Detergent-resistant membrane domains but not the proteasome are involved in the misfolding of a PrP mutant retained in the endoplasmic reticulum. Campana V; Sarnataro D; Fasano C; Casanova P; Paladino S; Zurzolo C J Cell Sci; 2006 Feb; 119(Pt 3):433-42. PubMed ID: 16443748 [TBL] [Abstract][Full Text] [Related]
9. Trafficking, turnover and membrane topology of PrP. Harris DA Br Med Bull; 2003; 66():71-85. PubMed ID: 14522850 [TBL] [Abstract][Full Text] [Related]
10. Charged bipolar suramin derivatives induce aggregation of the prion protein at the cell surface and inhibit PrPSc replication. Nunziante M; Kehler C; Maas E; Kassack MU; Groschup M; Schätzl HM J Cell Sci; 2005 Nov; 118(Pt 21):4959-73. PubMed ID: 16219680 [TBL] [Abstract][Full Text] [Related]
11. Combined pharmacological, mutational and cell biology approaches indicate that p53-dependent caspase 3 activation triggered by cellular prion is dependent on its endocytosis. Sunyach C; Checler F J Neurochem; 2005 Mar; 92(6):1399-407. PubMed ID: 15748158 [TBL] [Abstract][Full Text] [Related]
12. Recombinant human prion protein mutants huPrP D178N/M129 (FFI) and huPrP+9OR (fCJD) reveal proteinase K resistance. Gauczynski S; Krasemann S; Bodemer W; Weiss S J Cell Sci; 2002 Nov; 115(Pt 21):4025-36. PubMed ID: 12356908 [TBL] [Abstract][Full Text] [Related]
13. Selective re-routing of prion protein to proteasomes and alteration of its vesicular secretion prevent PrP(Sc) formation. Filesi I; Cardinale A; Mattei S; Biocca S J Neurochem; 2007 Jun; 101(6):1516-26. PubMed ID: 17542810 [TBL] [Abstract][Full Text] [Related]
14. Expression of mutant or cytosolic PrP in transgenic mice and cells is not associated with endoplasmic reticulum stress or proteasome dysfunction. Quaglio E; Restelli E; Garofoli A; Dossena S; De Luigi A; Tagliavacca L; Imperiale D; Migheli A; Salmona M; Sitia R; Forloni G; Chiesa R PLoS One; 2011 Apr; 6(4):e19339. PubMed ID: 21559407 [TBL] [Abstract][Full Text] [Related]
15. Stimulation of PrP(C) retrograde transport toward the endoplasmic reticulum increases accumulation of PrP(Sc) in prion-infected cells. Béranger F; Mangé A; Goud B; Lehmann S J Biol Chem; 2002 Oct; 277(41):38972-7. PubMed ID: 12163492 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of the FKBP family of peptidyl prolyl isomerases induces abortive translocation and degradation of the cellular prion protein. Stocki P; Sawicki M; Mays CE; Hong SJ; Chapman DC; Westaway D; Williams DB Mol Biol Cell; 2016 Mar; 27(5):757-67. PubMed ID: 26764098 [TBL] [Abstract][Full Text] [Related]
18. Calpain and other cytosolic proteases can contribute to the degradation of retro-translocated prion protein in the cytosol. Wang X; Wang F; Sy MS; Ma J J Biol Chem; 2005 Jan; 280(1):317-25. PubMed ID: 15525638 [TBL] [Abstract][Full Text] [Related]
19. Targeting of the prion protein to the cytosol: mechanisms and consequences. Miesbauer M; Rambold AS; Winklhofer KF; Tatzelt J Curr Issues Mol Biol; 2010; 12(2):109-18. PubMed ID: 19767654 [TBL] [Abstract][Full Text] [Related]
20. Overexpression of quality control proteins reduces prion conversion in prion-infected cells. Thapa S; Abdulrahman B; Abdelaziz DH; Lu L; Ben Aissa M; Schatzl HM J Biol Chem; 2018 Oct; 293(41):16069-16082. PubMed ID: 30154245 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]