These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1168 related articles for article (PubMed ID: 21836044)
1. Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle. Wang L; Mascher H; Psilander N; Blomstrand E; Sahlin K J Appl Physiol (1985); 2011 Nov; 111(5):1335-44. PubMed ID: 21836044 [TBL] [Abstract][Full Text] [Related]
2. Resistance exercise induced mTORC1 signaling is not impaired by subsequent endurance exercise in human skeletal muscle. Apró W; Wang L; Pontén M; Blomstrand E; Sahlin K Am J Physiol Endocrinol Metab; 2013 Jul; 305(1):E22-32. PubMed ID: 23632629 [TBL] [Abstract][Full Text] [Related]
3. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. Coffey VG; Zhong Z; Shield A; Canny BJ; Chibalin AV; Zierath JR; Hawley JA FASEB J; 2006 Jan; 20(1):190-2. PubMed ID: 16267123 [TBL] [Abstract][Full Text] [Related]
4. Protein ingestion increases myofibrillar protein synthesis after concurrent exercise. Camera DM; West DW; Phillips SM; Rerecich T; Stellingwerff T; Hawley JA; Coffey VG Med Sci Sports Exerc; 2015 Jan; 47(1):82-91. PubMed ID: 24870574 [TBL] [Abstract][Full Text] [Related]
5. Combined speed endurance and endurance exercise amplify the exercise-induced PGC-1α and PDK4 mRNA response in trained human muscle. Skovgaard C; Brandt N; Pilegaard H; Bangsbo J Physiol Rep; 2016 Jul; 4(14):. PubMed ID: 27456910 [TBL] [Abstract][Full Text] [Related]
6. Integrative effects of resistance training and endurance training on mitochondrial remodeling in skeletal muscle. Zhao YC; Gao BH Eur J Appl Physiol; 2024 Oct; 124(10):2851-2865. PubMed ID: 38981937 [TBL] [Abstract][Full Text] [Related]
7. Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. Atherton PJ; Babraj J; Smith K; Singh J; Rennie MJ; Wackerhage H FASEB J; 2005 May; 19(7):786-8. PubMed ID: 15716393 [TBL] [Abstract][Full Text] [Related]
8. Xanthine oxidase inhibition attenuates skeletal muscle signaling following acute exercise but does not impair mitochondrial adaptations to endurance training. Wadley GD; Nicolas MA; Hiam DS; McConell GK Am J Physiol Endocrinol Metab; 2013 Apr; 304(8):E853-62. PubMed ID: 23462817 [TBL] [Abstract][Full Text] [Related]
9. Differentiated mTOR but not AMPK signaling after strength vs endurance exercise in training-accustomed individuals. Vissing K; McGee S; Farup J; Kjølhede T; Vendelbo M; Jessen N Scand J Med Sci Sports; 2013 Jun; 23(3):355-66. PubMed ID: 23802289 [TBL] [Abstract][Full Text] [Related]
10. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1alpha in human skeletal muscle. Gibala MJ; McGee SL; Garnham AP; Howlett KF; Snow RJ; Hargreaves M J Appl Physiol (1985); 2009 Mar; 106(3):929-34. PubMed ID: 19112161 [TBL] [Abstract][Full Text] [Related]
11. Exercise with low glycogen increases PGC-1α gene expression in human skeletal muscle. Psilander N; Frank P; Flockhart M; Sahlin K Eur J Appl Physiol; 2013 Apr; 113(4):951-63. PubMed ID: 23053125 [TBL] [Abstract][Full Text] [Related]
12. PGC-1beta is downregulated by training in human skeletal muscle: no effect of training twice every second day vs. once daily on expression of the PGC-1 family. Mortensen OH; Plomgaard P; Fischer CP; Hansen AK; Pilegaard H; Pedersen BK J Appl Physiol (1985); 2007 Nov; 103(5):1536-42. PubMed ID: 17690194 [TBL] [Abstract][Full Text] [Related]
13. The order of concurrent endurance and resistance exercise modifies mTOR signaling and protein synthesis in rat skeletal muscle. Ogasawara R; Sato K; Matsutani K; Nakazato K; Fujita S Am J Physiol Endocrinol Metab; 2014 May; 306(10):E1155-62. PubMed ID: 24691029 [TBL] [Abstract][Full Text] [Related]
14. Intake of branched-chain or essential amino acids attenuates the elevation in muscle levels of PGC-1α4 mRNA caused by resistance exercise. Samuelsson H; Moberg M; Apró W; Ekblom B; Blomstrand E Am J Physiol Endocrinol Metab; 2016 Jul; 311(1):E246-51. PubMed ID: 27245337 [TBL] [Abstract][Full Text] [Related]
15. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. Yeo WK; Paton CD; Garnham AP; Burke LM; Carey AL; Hawley JA J Appl Physiol (1985); 2008 Nov; 105(5):1462-70. PubMed ID: 18772325 [TBL] [Abstract][Full Text] [Related]
16. Similar skeletal muscle angiogenic and mitochondrial signalling following 8 weeks of endurance exercise in mice: discontinuous versus continuous training. Malek MH; Hüttemann M; Lee I; Coburn JW Exp Physiol; 2013 Mar; 98(3):807-18. PubMed ID: 23180811 [TBL] [Abstract][Full Text] [Related]
17. Consecutive bouts of diverse contractile activity alter acute responses in human skeletal muscle. Coffey VG; Pilegaard H; Garnham AP; O'Brien BJ; Hawley JA J Appl Physiol (1985); 2009 Apr; 106(4):1187-97. PubMed ID: 19164772 [TBL] [Abstract][Full Text] [Related]
19. Interaction of contractile activity and training history on mRNA abundance in skeletal muscle from trained athletes. Coffey VG; Shield A; Canny BJ; Carey KA; Cameron-Smith D; Hawley JA Am J Physiol Endocrinol Metab; 2006 May; 290(5):E849-55. PubMed ID: 16338907 [TBL] [Abstract][Full Text] [Related]
20. Carbohydrate feeding during recovery alters the skeletal muscle metabolic response to repeated sessions of high-intensity interval exercise in humans. Cochran AJ; Little JP; Tarnopolsky MA; Gibala MJ J Appl Physiol (1985); 2010 Mar; 108(3):628-36. PubMed ID: 20056852 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]