BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 21836052)

  • 1. Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases.
    Callahan MP; Smith KE; Cleaves HJ; Ruzicka J; Stern JC; Glavin DP; House CH; Dworkin JP
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):13995-8. PubMed ID: 21836052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying the wide diversity of extraterrestrial purine and pyrimidine nucleobases in carbonaceous meteorites.
    Oba Y; Takano Y; Furukawa Y; Koga T; Glavin DP; Dworkin JP; Naraoka H
    Nat Commun; 2022 Apr; 13(1):2008. PubMed ID: 35473908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites.
    Burton AS; Stern JC; Elsila JE; Glavin DP; Dworkin JP
    Chem Soc Rev; 2012 Aug; 41(16):5459-72. PubMed ID: 22706603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleobases in Meteorites to Nucleobases in RNA and DNA?
    Krishnamurthy R; Goldman AD; Liberles DA; Rogers KL; Tor Y
    J Mol Evol; 2022 Oct; 90(5):328-331. PubMed ID: 35960316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life on Mars: chemical arguments and clues from Martian meteorites.
    Brack A; Pillinger CT
    Extremophiles; 1998 Aug; 2(3):313-9. PubMed ID: 9783179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The organic composition of carbonaceous meteorites: the evolutionary story ahead of biochemistry.
    Pizzarello S; Shock E
    Cold Spring Harb Perspect Biol; 2010 Mar; 2(3):a002105. PubMed ID: 20300213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleobases and prebiotic molecules in organic residues produced from the ultraviolet photo-irradiation of pyrimidine in NH(3) and H(2)O+NH(3) ices.
    Nuevo M; Milam SN; Sandford SA
    Astrobiology; 2012 Apr; 12(4):295-314. PubMed ID: 22519971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites.
    Cooper G; Reed C; Nguyen D; Carter M; Wang Y
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14015-20. PubMed ID: 21825143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraterrestrial ribose and other sugars in primitive meteorites.
    Furukawa Y; Chikaraishi Y; Ohkouchi N; Ogawa NO; Glavin DP; Dworkin JP; Abe C; Nakamura T
    Proc Natl Acad Sci U S A; 2019 Dec; 116(49):24440-24445. PubMed ID: 31740594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth.
    Cooper G; Kimmich N; Belisle W; Sarinana J; Brabham K; Garrel L
    Nature; 2001 Dec 20-27; 414(6866):879-83. PubMed ID: 11780054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of evidence for biological material in meteorites.
    Urey HC
    Life Sci Space Res; 1966; 4():35-59. PubMed ID: 11915888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino acid distribution in meteorites: diagenesis, extraction methods, and standard metrics in the search for extraterrestrial biosignatures.
    McDonald GD; Storrie-Lombardi MC
    Astrobiology; 2006 Feb; 6(1):17-33. PubMed ID: 16551224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meteorites and the RNA World: A Thermodynamic Model of Nucleobase Synthesis within Planetesimals.
    Pearce BK; Pudritz RE
    Astrobiology; 2016 Nov; 16(11):853-872. PubMed ID: 27827540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative amino acid concentrations as a signature for parent body processes of carbonaceous chondrites.
    Botta O; Glavin DP; Kminek G; Bada JL
    Orig Life Evol Biosph; 2002 Apr; 32(2):143-63. PubMed ID: 12185673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accretion and differentiation of carbon in the early Earth.
    Tingle TN
    Chem Geol; 1998 May; 147(1-2):3-10. PubMed ID: 11543125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrative analytical workflow to enhance comprehensive analysis of organic molecules in extraterrestrial objects.
    Serra C; Lange J; Remaury QB; Timoumi R; Danger G; Laurent B; Remusat L; Rodier CG; Poinot P
    Talanta; 2022 Jun; 243():123324. PubMed ID: 35219083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Search for EPR markers of the history and origin of the insoluble organic matter in extraterrestrial and terrestrial rocks.
    Gourier D; Binet L; Scrzypczak A; Derenne S; Robert F
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 May; 60(6):1349-57. PubMed ID: 15134734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preservation of Terrestrial Microorganisms and Organics Within Alteration Products of Chondritic Meteorites from the Nullarbor Plain, Australia.
    Tait AW; Wilson SA; Tomkins AG; Hamilton JL; Gagen EJ; Holman AI; Grice K; Preston LJ; Paterson DJ; Southam G
    Astrobiology; 2022 Apr; 22(4):399-415. PubMed ID: 35100042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life on Earth can grow on extraterrestrial organic carbon.
    Waajen AC; Lima C; Goodacre R; Cockell CS
    Sci Rep; 2024 Feb; 14(1):3691. PubMed ID: 38355968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polycyclic aromatic hydrocarbons (PAHs) in Antarctic Martian meteorites, carbonaceous chondrites, and polar ice.
    Becker L; Glavin DP; Bada JL
    Geochim Cosmochim Acta; 1997; 61(2):475-81. PubMed ID: 11541466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.