BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 21836163)

  • 21. Computational framework for analysis of prey-prey associations in interaction proteomics identifies novel human protein-protein interactions and networks.
    Saha S; Dazard JE; Xu H; Ewing RM
    J Proteome Res; 2012 Sep; 11(9):4476-87. PubMed ID: 22845868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mapping the Polarity Interactome.
    Pires HR; Boxem M
    J Mol Biol; 2018 Sep; 430(19):3521-3544. PubMed ID: 29289568
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Global topological features of cancer proteins in the human interactome.
    Jonsson PF; Bates PA
    Bioinformatics; 2006 Sep; 22(18):2291-7. PubMed ID: 16844706
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactome mapping for analysis of complex phenotypes: insights from benchmarking binary interaction assays.
    Braun P
    Proteomics; 2012 May; 12(10):1499-518. PubMed ID: 22589225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identifying functional modules in the physical interactome of Saccharomyces cerevisiae.
    Pu S; Vlasblom J; Emili A; Greenblatt J; Wodak SJ
    Proteomics; 2007 Mar; 7(6):944-60. PubMed ID: 17370254
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Yeast two-hybrid contributions to interactome mapping.
    Parrish JR; Gulyas KD; Finley RL
    Curr Opin Biotechnol; 2006 Aug; 17(4):387-93. PubMed ID: 16806892
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting protein-peptide interactions via a network-based motif sampler.
    Reiss DJ; Schwikowski B
    Bioinformatics; 2004 Aug; 20 Suppl 1():i274-82. PubMed ID: 15262809
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of functional hubs and modules by converting interactome networks into hierarchical ordering of proteins.
    Cho YR; Zhang A
    BMC Bioinformatics; 2010 Apr; 11 Suppl 3(Suppl 3):S3. PubMed ID: 20438650
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Negative protein-protein interaction datasets derived from large-scale two-hybrid experiments.
    Trabuco LG; Betts MJ; Russell RB
    Methods; 2012 Dec; 58(4):343-8. PubMed ID: 22884951
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteome-wide, Structure-Based Prediction of Protein-Protein Interactions/New Molecular Interactions Viewer.
    Dong S; Lau V; Song R; Ierullo M; Esteban E; Wu Y; Sivieng T; Nahal H; Gaudinier A; Pasha A; Oughtred R; Dolinski K; Tyers M; Brady SM; Grene R; Usadel B; Provart NJ
    Plant Physiol; 2019 Apr; 179(4):1893-1907. PubMed ID: 30679268
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mapping, modeling, and characterization of protein-protein interactions on a proteomic scale.
    Cafarelli TM; Desbuleux A; Wang Y; Choi SG; De Ridder D; Vidal M
    Curr Opin Struct Biol; 2017 Jun; 44():201-210. PubMed ID: 28575754
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Global protein interactome exploration through mining genome-scale data in Arabidopsis thaliana.
    Xu F; Li G; Zhao C; Li Y; Li P; Cui J; Deng Y; Shi T
    BMC Genomics; 2010 Nov; 11 Suppl 2(Suppl 2):S2. PubMed ID: 21047383
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Architecture of the human interactome defines protein communities and disease networks.
    Huttlin EL; Bruckner RJ; Paulo JA; Cannon JR; Ting L; Baltier K; Colby G; Gebreab F; Gygi MP; Parzen H; Szpyt J; Tam S; Zarraga G; Pontano-Vaites L; Swarup S; White AE; Schweppe DK; Rad R; Erickson BK; Obar RA; Guruharsha KG; Li K; Artavanis-Tsakonas S; Gygi SP; Harper JW
    Nature; 2017 May; 545(7655):505-509. PubMed ID: 28514442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Domain-based prediction of the human isoform interactome provides insights into the functional impact of alternative splicing.
    Ghadie MA; Lambourne L; Vidal M; Xia Y
    PLoS Comput Biol; 2017 Aug; 13(8):e1005717. PubMed ID: 28846689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Binding site prediction for protein-protein interactions and novel motif discovery using re-occurring polypeptide sequences.
    Amos-Binks A; Patulea C; Pitre S; Schoenrock A; Gui Y; Green JR; Golshani A; Dehne F
    BMC Bioinformatics; 2011 Jun; 12():225. PubMed ID: 21635751
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessing the limits of genomic data integration for predicting protein networks.
    Lu LJ; Xia Y; Paccanaro A; Yu H; Gerstein M
    Genome Res; 2005 Jul; 15(7):945-53. PubMed ID: 15998909
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-quality binary interactome mapping.
    Dreze M; Monachello D; Lurin C; Cusick ME; Hill DE; Vidal M; Braun P
    Methods Enzymol; 2010; 470():281-315. PubMed ID: 20946815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality.
    Hart GT; Lee I; Marcotte ER
    BMC Bioinformatics; 2007 Jul; 8():236. PubMed ID: 17605818
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Categorizing biases in high-confidence high-throughput protein-protein interaction data sets.
    Yu X; Ivanic J; Memisević V; Wallqvist A; Reifman J
    Mol Cell Proteomics; 2011 Dec; 10(12):M111.012500. PubMed ID: 21876202
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integration of multiple biological features yields high confidence human protein interactome.
    Karagoz K; Sevimoglu T; Arga KY
    J Theor Biol; 2016 Aug; 403():85-96. PubMed ID: 27196966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.