BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 21836219)

  • 21. Dynamics of water confined in the interdomain region of a multidomain protein.
    Hua L; Huang X; Zhou R; Berne BJ
    J Phys Chem B; 2006 Mar; 110(8):3704-11. PubMed ID: 16494427
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reorientation dynamics of nanoconfined water: power-law decay, hydrogen-bond jumps, and test of a two-state model.
    Laage D; Thompson WH
    J Chem Phys; 2012 Jan; 136(4):044513. PubMed ID: 22299897
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydration structure of water confined between mica surfaces.
    Leng Y; Cummings PT
    J Chem Phys; 2006 Feb; 124(7):74711. PubMed ID: 16497074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of confinement between attractive and repulsive walls on the thermodynamics of an anomalous fluid.
    Leoni F; Franzese G
    Phys Rev E; 2016 Dec; 94(6-1):062604. PubMed ID: 28085471
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure and dynamics of water confined in silica nanopores.
    Milischuk AA; Ladanyi BM
    J Chem Phys; 2011 Nov; 135(17):174709. PubMed ID: 22070319
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring DNA groove water dynamics through hydrogen bond lifetime and orientational relaxation.
    Pal S; Maiti PK; Bagchi B
    J Chem Phys; 2006 Dec; 125(23):234903. PubMed ID: 17190573
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogen-bond dynamics in the air-water interface.
    Liu P; Harder E; Berne BJ
    J Phys Chem B; 2005 Feb; 109(7):2949-55. PubMed ID: 16851308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular simulations of the structure and dynamics of water confined between alkanethiol self-assembled monolayer plates.
    Layfield JP; Troya D
    J Phys Chem B; 2011 Apr; 115(16):4662-70. PubMed ID: 21466175
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermodynamic, diffusional, and structural anomalies in rigid-body water models.
    Agarwal M; Alam MP; Chakravarty C
    J Phys Chem B; 2011 Jun; 115(21):6935-45. PubMed ID: 21553909
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrophobic nanoconfinement suppresses fluctuations in supercooled water.
    Strekalova EG; Mazza MG; Stanley HE; Franzese G
    J Phys Condens Matter; 2012 Feb; 24(6):064111. PubMed ID: 22277682
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics of the water hydrogen bond network at ionic, nonionic, and hydrophobic interfaces in nanopores and reverse micelles.
    Rosenfeld DE; Schmuttenmaer CA
    J Phys Chem B; 2011 Feb; 115(5):1021-31. PubMed ID: 21182316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Communication: On the origin of the non-Arrhenius behavior in water reorientation dynamics.
    Stirnemann G; Laage D
    J Chem Phys; 2012 Jul; 137(3):031101. PubMed ID: 22830675
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolution from surface-influenced to bulk-like dynamics in nanoscopically confined water.
    Romero-Vargas Castrillón S; Giovambattista N; Aksay IA; Debenedetti PG
    J Phys Chem B; 2009 Jun; 113(23):7973-6. PubMed ID: 19449830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Liquid water confined in carbon nanochannels at high temperatures.
    Nagy G; Gordillo MC; Guàrdia E; Martí J
    J Phys Chem B; 2007 Nov; 111(43):12524-30. PubMed ID: 17927234
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The glass transition and relaxation behavior of bulk water and a possible relation to confined water.
    Swenson J; Teixeira J
    J Chem Phys; 2010 Jan; 132(1):014508. PubMed ID: 20078173
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature dependence of the evaporation lengthscale for water confined between two hydrophobic plates.
    Djikaev YS; Ruckenstein E
    J Colloid Interface Sci; 2015 Jul; 449():226-35. PubMed ID: 25708521
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural properties and liquid spinodal of water confined in a hydrophobic environment.
    Gallo P; Rovere M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061202. PubMed ID: 18233837
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Water hydrogen-bond dynamics around amino acids: the key role of hydrophilic hydrogen-bond acceptor groups.
    Sterpone F; Stirnemann G; Hynes JT; Laage D
    J Phys Chem B; 2010 Feb; 114(5):2083-9. PubMed ID: 20085364
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of confinement on anomalies and phase transitions of core-softened fluids.
    Krott LB; Bordin JR; Barraz NM; Barbosa MC
    J Chem Phys; 2015 Apr; 142(13):134502. PubMed ID: 25854248
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrogen-bond network formation of water molecules and its effects on the glass transitions in the ethylene glycol aqueous solutions: failure of the Gordon-Taylor law in the water-rich range and absence of the T(g) = 115 K rearrangement process in bulk pure water.
    Nagoe A; Oguni M
    J Phys Condens Matter; 2010 Aug; 22(32):325103. PubMed ID: 21386485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.