BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 21836258)

  • 1. Energy dissipation of high-speed nanobearings from double-walled carbon nanotubes.
    Zhu C; Guo W; Yu T
    Nanotechnology; 2008 Nov; 19(46):465703. PubMed ID: 21836258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal effect on DWCNTs as rotational bearings.
    Zhu BE; Pan ZY; Wang YX; Xiao Y
    Nanotechnology; 2008 Dec; 19(49):495708. PubMed ID: 21730688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Schematic construction of flanged nanobearings from double-walled carbon nanotubes.
    Shenai PM; Zhao Y
    Nanoscale; 2010 Aug; 2(8):1500-4. PubMed ID: 20820742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustained smooth dynamics in short-sleeved nanobearings based on double-walled carbon nanotubes.
    Shenai PM; Ye J; Zhao Y
    Nanotechnology; 2010 Dec; 21(49):495303. PubMed ID: 21071821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat conduction in double-walled carbon nanotubes with intertube additional carbon atoms.
    Cui L; Feng Y; Tan P; Zhang X
    Phys Chem Chem Phys; 2015 Jul; 17(25):16476-82. PubMed ID: 26051798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conditions for escape of a rotor in a rotary nanobearing from short triple-wall nanotubes.
    Shi J; Liu LN; Cai K; Qin QH
    Sci Rep; 2017 Jul; 7(1):6772. PubMed ID: 28755000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal gradient induced actuation in double-walled carbon nanotubes.
    Hou QW; Cao BY; Guo ZY
    Nanotechnology; 2009 Dec; 20(49):495503. PubMed ID: 19893145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the effects of commensurability on friction between concentric carbon nanotubes.
    Zhu C; Shenai PM; Zhao Y
    Nanotechnology; 2012 Jan; 23(1):015702. PubMed ID: 22156240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The frequency of cantilevered double-wall carbon nanotube resonators as a function of outer wall length.
    Kang JW; Choi YG; Kim Y; Jiang Q; Kwon OK; Hwang HJ
    J Phys Condens Matter; 2009 Sep; 21(38):385301. PubMed ID: 21832365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double-walled carbon nanotube array for CO2 and SO2 adsorption.
    Rahimi M; Babu DJ; Singh JK; Yang YB; Schneider JJ; Müller-Plathe F
    J Chem Phys; 2015 Sep; 143(12):124701. PubMed ID: 26429026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. When double-wall carbon nanotubes can become metallic or semiconducting.
    Moradian R; Azadi S; Refii-Tabar H
    J Phys Condens Matter; 2007 Apr; 19(17):176209. PubMed ID: 21690955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gradientless temperature-driven rotating motor from a double-walled carbon nanotube.
    Cai K; Li Y; Qin QH; Yin H
    Nanotechnology; 2014 Dec; 25(50):505701. PubMed ID: 25420489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of double-walled carbon nanotubes by catalytic chemical vapor deposition and their field emission properties.
    Lee YD; Lee HJ; Han JH; Yoo JE; Lee YH; Kim JK; Nahm S; Ju BK
    J Phys Chem B; 2006 Mar; 110(11):5310-4. PubMed ID: 16539462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical absorption spectra in finite double-walled carbon nanotubes.
    Chen RB; Lee CH
    J Nanosci Nanotechnol; 2010 Jan; 10(1):643-9. PubMed ID: 20352905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Buckling analysis of defective cross-linked functionalized single- and double-walled carbon nanotubes with polyethylene chains using molecular dynamics simulations.
    Ajori S; Ansari R; Parsapour H
    J Mol Model; 2016 Dec; 22(12):298. PubMed ID: 27900580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling and calculation of field emission enhancement factor for carbon nanotubes array.
    Wang XQ; Wang M; Li ZH; Xu YB; He PM
    Ultramicroscopy; 2005 Feb; 102(3):181-7. PubMed ID: 15639348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature dependence of frictional force in carbon nanotube oscillators.
    Chen Y; Yang J; Wang X; Ni Z; Li D
    Nanotechnology; 2009 Jan; 20(3):035704. PubMed ID: 19417306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A nanoengine governor based on the end interfacial effect.
    Shi J; Cai K; Qin QH
    Nanotechnology; 2016 Dec; 27(49):495704. PubMed ID: 27827349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sudden stoppage of rotor in a thermally driven rotary motor made from double-walled carbon nanotubes.
    Cai K; Yu JZ; Yin H; Qin QH
    Nanotechnology; 2015 Mar; 26(9):095702. PubMed ID: 25676848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast exciton energy transfer between nanoscale coaxial cylinders: intertube transfer and luminescence quenching in double-walled carbon nanotubes.
    Koyama T; Asada Y; Hikosaka N; Miyata Y; Shinohara H; Nakamura A
    ACS Nano; 2011 Jul; 5(7):5881-7. PubMed ID: 21682277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.