BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 21836258)

  • 21. An intrinsic energy conversion mechanism via telescopic extension and retraction of concentric carbon nanotubes.
    Guo Z; Zhang H; Li J; Leng J; Zhang Y; Chang T
    Nanoscale; 2018 Mar; 10(10):4897-4903. PubMed ID: 29480296
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing charge transfer between shells of double-walled carbon nanotubes sorted by outer-wall electronic type.
    Kalbac M; Green AA; Hersam MC; Kavan L
    Chemistry; 2011 Aug; 17(35):9806-15. PubMed ID: 21774002
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Defect-driven rotating system based on a double-walled carbon nanotube and graphene.
    Lin X; Han Q
    J Mol Model; 2019 Aug; 25(9):262. PubMed ID: 31422475
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular dynamics study of carbon nanotube oscillators revisited.
    Zhao X; Cummings PT
    J Chem Phys; 2006 Apr; 124(13):134705. PubMed ID: 16613466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of strain engineering on superlubricity in a double-walled carbon nanotube.
    Li J; Peng Y; Tang X; Xu Q; Bai L
    Phys Chem Chem Phys; 2021 Mar; 23(8):4988-5000. PubMed ID: 33621296
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-temperature thermal stability and axial compressive properties of a coaxial carbon nanotube inside a boron nitride nanotube.
    Liew KM; Yuan J
    Nanotechnology; 2011 Feb; 22(8):085701. PubMed ID: 21242624
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancement of friction between carbon nanotubes: an efficient strategy to strengthen fibers.
    Zhang X; Li Q
    ACS Nano; 2010 Jan; 4(1):312-6. PubMed ID: 20020757
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of intertube van der Waals interaction on the stability of pristine and functionalized carbon nanotubes under compression.
    Kuang YD; Shi SQ; Chan PK; Chen CY
    Nanotechnology; 2010 Mar; 21(12):125704. PubMed ID: 20195018
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermal-gradient-induced interaction energy ramp and actuation of relative axial motion in short-sleeved double-walled carbon nanotubes.
    Shenai PM; Xu Z; Zhao Y
    Nanotechnology; 2011 Dec; 22(48):485702. PubMed ID: 22056730
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of tube length, radius and chirality on the buckling behavior of single-walled carbon nanotubes filled with copper atoms.
    Wang L; Zhang HW; Deng XM
    J Phys Condens Matter; 2009 Jul; 21(30):305301. PubMed ID: 21828546
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The identification of inner tube defects in double-wall carbon nanotubes.
    Allen CS; Robertson AW; Kirkland AI; Warner JH
    Small; 2012 Dec; 8(24):3810-5. PubMed ID: 22961712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxygen gas-induced lip-lip interactions on a double-walled carbon nanotube edge.
    Choi YS; Park KA; Kim C; Lee YH
    J Am Chem Soc; 2004 Aug; 126(30):9433-8. PubMed ID: 15281836
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrogenated double wall carbon nanotubes.
    Denis PA; Iribarne F; Faccio R
    J Chem Phys; 2009 May; 130(19):194704. PubMed ID: 19466852
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ab initio study of edge effect on relative motion of walls in carbon nanotubes.
    Popov AM; Lebedeva IV; Knizhnik AA; Lozovik YE; Potapkin BV
    J Chem Phys; 2013 Jan; 138(2):024703. PubMed ID: 23320709
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Macroscopic wall number analysis of single-walled, double-walled, and few-walled carbon nanotubes by X-ray diffraction.
    Futaba DN; Yamada T; Kobashi K; Yumura M; Hata K
    J Am Chem Soc; 2011 Apr; 133(15):5716-9. PubMed ID: 21438641
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ Raman spectroelectrochemical study of 13C-labeled fullerene peapods and carbon nanotubes.
    Kalbác M; Kavan L; Zukalová M; Dunsch L
    Small; 2007 Oct; 3(10):1746-52. PubMed ID: 17853497
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rotation-excited perfect oscillation of a tri-walled nanotube-based oscillator at ultralow temperature.
    Cai K; Zhang X; Shi J; Qin QH
    Nanotechnology; 2017 Apr; 28(15):155701. PubMed ID: 28303802
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced field emission properties of vertically aligned double-walled carbon nanotube arrays.
    Chen G; Shin DH; Iwasaki T; Kawarada H; Lee CJ
    Nanotechnology; 2008 Oct; 19(41):415703. PubMed ID: 21832654
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon nanotube conditioning part 1-effect of interwall interaction on the electronic band gap of double-walled carbon nanotubes.
    Soto M; Vajtai R; Ajayan PM; Barrera EV
    Nanotechnology; 2018 Jan; 29(4):045701. PubMed ID: 29199975
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal Vibration-Induced Rotation of Nano-Wheel: A Molecular Dynamics Study.
    Duan H; Shi J; Cai K; Qin QH
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30413027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.