These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 21836276)

  • 61. Low density MOVPE grown InGaAs QDs exhibiting ultra-narrow single exciton linewidths.
    Richter D; Hafenbrak R; Jöns KD; Schulz WM; Eichfelder M; Heldmaier M; Rossbach R; Jetter M; Michler P
    Nanotechnology; 2010 Mar; 21(12):125606. PubMed ID: 20203350
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Molecular beam epitaxy growth methods of wavelength control for InAs/(In)GaAsN/GaAs heterostructures.
    Mamutin VV; Egorov AY; Kryzhanovskaya NV
    Nanotechnology; 2008 Nov; 19(44):445715. PubMed ID: 21832756
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Theoretical study of strain-dependent optical absorption in a doped self-assembled InAs/InGaAs/GaAs/AlGaAs quantum dot.
    Ameen TA; Ilatikhameneh H; Tankasala A; Hsueh Y; Charles J; Fonseca J; Povolotskyi M; Kim JO; Krishna S; Allen MS; Allen JW; Rahman R; Klimeck G
    Beilstein J Nanotechnol; 2018; 9():1075-1084. PubMed ID: 29719758
    [TBL] [Abstract][Full Text] [Related]  

  • 64. In/Ga inter-diffusion in InAs quantum dot in InGaAs/GaAs asymmetric quantum well.
    Abdellatif MH; Song JD; Choi WJ; Cho NK
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5774-7. PubMed ID: 22966652
    [TBL] [Abstract][Full Text] [Related]  

  • 65. In-place bonded semiconductor membranes as compliant substrates for III-V compound devices.
    Garcia Jr AJ; Rodrigues LN; Covre da Silva SF; Morelhão SL; Couto Jr ODD; Iikawa F; Deneke C
    Nanoscale; 2019 Feb; 11(8):3748-3756. PubMed ID: 30747930
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Inhomogeneous broadening and alloy intermixing in low proton dose implanted InAs/GaAs self-assembled quantum dots.
    Zaâboub Z; Ilahi B; Sfaxi L; Maaref H; Salem B; Aimez V; Morris D
    Nanotechnology; 2008 Jul; 19(28):285715. PubMed ID: 21828749
    [TBL] [Abstract][Full Text] [Related]  

  • 67. InAs/GaAs nanostructures grown on patterned Si(001) by molecular beam epitaxy.
    He J; Yadavalli K; Zhao Z; Li N; Hao Z; Wang KL; Jacob AP
    Nanotechnology; 2008 Nov; 19(45):455607. PubMed ID: 21832784
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Influencing factors on the size uniformity of self-assembled SiGe quantum rings grown by molecular beam epitaxy.
    Cui J; Lv Y; Yang XJ; Fan YL; Zhong Z; Jiang ZM
    Nanotechnology; 2011 Mar; 22(12):125601. PubMed ID: 21317488
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Exploring the Implementation of GaAsBi Alloys as Strain-Reducing Layers in InAs/GaAs Quantum Dots.
    Braza V; Fernández D; Ben T; Flores S; Bailey NJ; Carr M; Richards R; Gonzalez D
    Nanomaterials (Basel); 2024 Feb; 14(4):. PubMed ID: 38392748
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Optical properties of as-grown and annealed InAs quantum dots on InGaAs cross-hatch patterns.
    Himwas C; Panyakeow S; Kanjanachuchai S
    Nanoscale Res Lett; 2011 Aug; 6(1):496. PubMed ID: 21849063
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Photoconductivity Relaxation Mechanisms of InGaAs/GaAs Quantum Dot Chain Structures.
    Kondratenko SV; Iliash SA; Vakulenko OV; Mazur YI; Benamara M; Marega E; Salamo GJ
    Nanoscale Res Lett; 2017 Dec; 12(1):183. PubMed ID: 28282982
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Numerical simulation of electronic properties of coupled quantum dots on wetting layers.
    Betcke MM; Voss H
    Nanotechnology; 2008 Apr; 19(16):165204. PubMed ID: 21825638
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Self-assembled InGaAs quantum dot clusters with controlled spatial and spectral properties.
    Creasey M; Lee JH; Wang Z; Salamo GJ; Li X
    Nano Lett; 2012 Oct; 12(10):5169-74. PubMed ID: 22992172
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effect of rapid thermal annealing on the electrical properties of GaAs Schottky diodes embedded with self-assembled InAs quantum dots.
    Colleaux F; Lee J; Yu BY; Han I; Choi W; Song JD; Ghibaudo G
    J Nanosci Nanotechnol; 2008 Oct; 8(10):5558-60. PubMed ID: 19198498
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Morphology response to strain field interferences in stacks of highly ordered quantum dot arrays.
    Heidemeyer H; Denker U; Müller C; Schmidt OG
    Phys Rev Lett; 2003 Nov; 91(19):196103. PubMed ID: 14611591
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Structural and compositional analysis of (InGa)(AsSb)/GaAs/GaP Stranski-Krastanov quantum dots.
    Gajjela RSR; Hendriks AL; Douglas JO; Sala EM; Steindl P; Klenovský P; Bagot PAJ; Moody MP; Bimberg D; Koenraad PM
    Light Sci Appl; 2021 Jun; 10(1):125. PubMed ID: 34127643
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Experimentally-Verified Modeling of InGaAs Quantum Dots.
    Kosarev AN; Chaldyshev VV; Cherkashin N
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745307
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Nature of the Stranski-Krastanow transition during epitaxy of InGaAs on GaAs.
    Walther T; Cullis AG; Norris DJ; Hopkinson M
    Phys Rev Lett; 2001 Mar; 86(11):2381-4. PubMed ID: 11289934
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Energy state of InGaAs quantum dots on SiO2-patterned vicinal substrate.
    Kim HJ; Mothohisa J; Fukui T
    Nanoscale Res Lett; 2012 Feb; 7(1):104. PubMed ID: 22309499
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Quantum dot cascade laser.
    Zhuo N; Liu FQ; Zhang JC; Wang LJ; Liu JQ; Zhai SQ; Wang ZG
    Nanoscale Res Lett; 2014 Mar; 9(1):144. PubMed ID: 24666965
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.