These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 21836276)

  • 81. Bismuth Quantum Dots in Annealed GaAsBi/AlAs Quantum Wells.
    Butkutė R; Niaura G; Pozingytė E; Čechavičius B; Selskis A; Skapas M; Karpus V; Krotkus A
    Nanoscale Res Lett; 2017 Dec; 12(1):436. PubMed ID: 28673054
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Interplay Effect of Temperature and Excitation Intensity on the Photoluminescence Characteristics of InGaAs/GaAs Surface Quantum Dots.
    Yuan Q; Liang B; Zhou C; Wang Y; Guo Y; Wang S; Fu G; Mazur YI; Ware ME; Salamo GJ
    Nanoscale Res Lett; 2018 Nov; 13(1):387. PubMed ID: 30498864
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Effect of Interfacial Bonds on the Morphology of InAs QDs Grown on GaAs (311) B and (100) Substrates.
    Wang L; Li M; Xiong M; Zhao L
    Nanoscale Res Lett; 2009 Apr; 4(7):689-93. PubMed ID: 20596311
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Self-limiting evolution of seeded quantum wires and dots on patterned substrates.
    Dimastrodonato V; Pelucchi E; Vvedensky DD
    Phys Rev Lett; 2012 Jun; 108(25):256102. PubMed ID: 23004625
    [TBL] [Abstract][Full Text] [Related]  

  • 85. The Coulomb-interaction-induced breaking of the Aufbau principle for the hole charging of InGaAs/GaAs quantum dots.
    Pasek WJ
    J Phys Condens Matter; 2016 Dec; 28(48):485303. PubMed ID: 27705953
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Control of vertically coupled InGaAs/GaAs quantum dots with electric fields.
    Ortner G; Bayer M; Lyanda-Geller Y; Reinecke TL; Kress A; Reithmaier JP; Forchel A
    Phys Rev Lett; 2005 Apr; 94(15):157401. PubMed ID: 15904185
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Coupling of surface plasmon with InGaAs/GaAs quantum well emission by gold nanodisk arrays.
    Gao H; Tung KH; Teng J; Chua SJ; Xiang N
    Appl Opt; 2013 Jun; 52(16):3698-702. PubMed ID: 23736322
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Excitonic energy shell structure of self-assembled InGaAs/GaAs quantum dots.
    Raymond S; Studenikin S; Sachrajda A; Wasilewski Z; Cheng SJ; Sheng W; Hawrylak P; Babinski A; Potemski M; Ortner G; Bayer M
    Phys Rev Lett; 2004 May; 92(18):187402. PubMed ID: 15169530
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot.
    Houel J; Kuhlmann AV; Greuter L; Xue F; Poggio M; Gerardot BD; Dalgarno PA; Badolato A; Petroff PM; Ludwig A; Reuter D; Wieck AD; Warburton RJ
    Phys Rev Lett; 2012 Mar; 108(10):107401. PubMed ID: 22463453
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Coherent spectroscopy of optically gated charged single InGaAs quantum dots.
    Besombes L; Baumberg JJ; Motohisa J
    Phys Rev Lett; 2003 Jun; 90(25 Pt 1):257402. PubMed ID: 12857163
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Wetting layer evolution and its temperature dependence during self-assembly of InAs/GaAs quantum dots.
    Zhang H; Chen Y; Zhou G; Tang C; Wang Z
    Nanoscale Res Lett; 2012 Oct; 7(1):600. PubMed ID: 23110846
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Tuning the exciton binding energies in single self-assembled InGaAs/GaAs quantum dots by piezoelectric-induced biaxial stress.
    Ding F; Singh R; Plumhof JD; Zander T; Krápek V; Chen YH; Benyoucef M; Zwiller V; Dörr K; Bester G; Rastelli A; Schmidt OG
    Phys Rev Lett; 2010 Feb; 104(6):067405. PubMed ID: 20366855
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Optical gain analysis of GaAs-based InGaAs/GaAsSbBi type-II quantum wells lasers.
    Chen B
    Opt Express; 2017 Oct; 25(21):25183-25192. PubMed ID: 29041188
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Tuning the optical performance of surface quantum dots in InGaAs/GaAs hybrid structures.
    Liang BL; Wang ZhM; Mazur YI; Seydmohamadi Sh; Ware ME; Salamo GJ
    Opt Express; 2007 Jun; 15(13):8157-62. PubMed ID: 19547142
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Imaging the electrostatic landscape of unstrained self-assemble GaAs quantum dots.
    Martin Lanzoni E; Covre da Silva SF; Knopper MF; Garcia AJ; Costa CAR; Deneke C
    Nanotechnology; 2022 Jan; 33(16):. PubMed ID: 34983039
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Reduced linewidth enhancement factor due to excited state transition of quantum dot lasers.
    Xu PF; Ji HM; Xiao JL; Gu YX; Huang YZ; Yang T
    Opt Lett; 2012 Apr; 37(8):1298-300. PubMed ID: 22513665
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Defect formation in self-assembling quantum dots of InGaAs on GaAs: a case study of direct measurements of local strain from HREM.
    Jin-Phillipp NY; Phillipp F
    J Microsc; 1999 Apr; 194(1):161-170. PubMed ID: 10320550
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Directed self-assembly of quantum structures by nanomechanical stamping using probe tips.
    Taylor C; Marega E; Stach EA; Salamo G; Hussey L; Muñoz M; Malshe A
    Nanotechnology; 2008 Jan; 19(1):015301. PubMed ID: 21730527
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Growth mechanisms and process window for InAs V-shaped nanoscale membranes on Si[001].
    Russo-Averchi E; Dalmau-Mallorquí A; Canales-Mundet I; Tütüncüoğlu G; Alarcon-Llado E; Heiss M; Rüffer D; Conesa-Boj S; Caroff P; Fontcuberta i Morral A
    Nanotechnology; 2013 Nov; 24(43):435603. PubMed ID: 24107441
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Nanometer-scale resolution of strain and interdiffusion in self-assembled InAs/GaAs quantum dots.
    Kegel I; Metzger TH; Lorke A; Peisl J; Stangl J; Bauer G; Garcia JM; Petroff PM
    Phys Rev Lett; 2000 Aug; 85(8):1694-7. PubMed ID: 10970591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.