These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 21836325)

  • 61. Effect of ZnFe2O4 doping on the photocatalytic activity of TiO2.
    Liu GG; Zhang XZ; Xu YJ; Niu XS; Zheng LQ; Ding XJ
    Chemosphere; 2004 Jun; 55(9):1287-91. PubMed ID: 15081770
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Anodic formation of thick anatase TiO2 mesosponge layers for high-efficiency photocatalysis.
    Lee K; Kim D; Roy P; Paramasivam I; Birajdar BI; Spiecker E; Schmuki P
    J Am Chem Soc; 2010 Feb; 132(5):1478-9. PubMed ID: 20078123
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Highly efficient visible light TiO2 photocatalyst prepared by sol-gel method at temperatures lower than 300°C.
    Wang D; Xiao L; Luo Q; Li X; An J; Duan Y
    J Hazard Mater; 2011 Aug; 192(1):150-9. PubMed ID: 21616590
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Photoelectrocatalytic treatment of pentachlorophenol in aqueous solution using a rutile nanotube-like TiO2/Ti electrode.
    Yang S; Quan X; Li X; Sun C
    Photochem Photobiol Sci; 2006 Sep; 5(9):808-14. PubMed ID: 17047832
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Preparation and enhanced photocatalytic activity of Ag@TiO2 core-shell nanocomposite nanowires.
    Cheng B; Le Y; Yu J
    J Hazard Mater; 2010 May; 177(1-3):971-7. PubMed ID: 20080343
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Synthesis of Mg-Doped TiO2 nanoparticles under different conditions and its photocatalytic activity.
    Behnajady MA; Alizade B; Modirshahla N
    Photochem Photobiol; 2011; 87(6):1308-14. PubMed ID: 21913938
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Atomic layer deposition in nanometer-level replication of cellulosic substances and preparation of photocatalytic TiO2/cellulose composites.
    Kemell M; Pore V; Ritala M; Leskelä M; Lindén M
    J Am Chem Soc; 2005 Oct; 127(41):14178-9. PubMed ID: 16218600
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Multistep structural transition of hydrogen trititanate nanotubes into TiO2-B nanotubes: a comparison study between nanostructured and bulk materials.
    Morgado E; Jardim PM; Marinkovic BA; Rizzo FC; de Abreu MA; Zotin JL; Araújo AS
    Nanotechnology; 2007 Dec; 18(49):495710. PubMed ID: 20442491
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Stable anatase TiO₂ coating on quartz fibers by atomic layer deposition for photoactive light-scattering in dye-sensitized solar cells.
    Kim DH; Koo HJ; Jur JS; Woodroof M; Kalanyan B; Lee K; Devine CK; Parsons GN
    Nanoscale; 2012 Aug; 4(15):4731-8. PubMed ID: 22751846
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Nanoparticulate hollow TiO2 fibers as light scatterers in dye-sensitized solar cells: layer-by-layer self-assembly parameters and mechanism.
    Rahman M; Tajabadi F; Shooshtari L; Taghavinia N
    Chemphyschem; 2011 Apr; 12(5):966-73. PubMed ID: 21416574
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Template-free formation of vertically oriented TiO2 nanorods with uniform distribution for organics-sensing application.
    Mu Q; Li Y; Zhang Q; Wang H
    J Hazard Mater; 2011 Apr; 188(1-3):363-8. PubMed ID: 21345584
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Enhanced photocatalytic activity of nanotube-like titania by sulfuric acid treatment.
    Yang SG; Quan X; Li XY; Fang N; Zhang N; Zhao HM
    J Environ Sci (China); 2005; 17(2):290-3. PubMed ID: 16295908
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Hydroxyapatite growth on anodic TiO2 nanotubes.
    Tsuchiya H; Macak JM; Müller L; Kunze J; Müller F; Greil P; Virtanen S; Schmuki P
    J Biomed Mater Res A; 2006 Jun; 77(3):534-41. PubMed ID: 16489589
    [TBL] [Abstract][Full Text] [Related]  

  • 74. TiO2-based nanotubes modified with nickel: synthesis, properties, and improved photocatalytic activity.
    Qamar M; Kim SJ; Ganguli AK
    Nanotechnology; 2009 Nov; 20(45):455703. PubMed ID: 19834243
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Iron-doped Pt-TiO2 nanotubes for photo-catalytic water splitting.
    Eder D; Motta M; Windle AH
    Nanotechnology; 2009 Feb; 20(5):055602. PubMed ID: 19417349
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Synthesis and enhanced photocatalytic activity of a hierarchical porous flowerlike p-n junction NiO/TiO2 photocatalyst.
    Yu J; Wang W; Cheng B
    Chem Asian J; 2010 Dec; 5(12):2499-506. PubMed ID: 20941785
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Ozone-assisted photocatalytic oxidation of gaseous acetaldehyde on TiO2/H-ZSM-5 catalysts.
    Huang X; Yuan J; Shi J; Shangguan W
    J Hazard Mater; 2009 Nov; 171(1-3):827-32. PubMed ID: 19604630
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The fabrication of TiO(2) nanorods from TiO(2) nanoparticles by organic protection assisted template method.
    Luo Z; Yang W; Peng A; Zeng Y; Yao J
    Nanotechnology; 2009 Aug; 20(34):345601. PubMed ID: 19652270
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Microwave assisted rapid and complete degradation of atrazine using TiO(2) nanotube photocatalyst suspensions.
    Zhanqi G; Shaogui Y; Na T; Cheng S
    J Hazard Mater; 2007 Jul; 145(3):424-30. PubMed ID: 17188429
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Beta zeolite supported sol-gel TiO2 materials for gas phase photocatalytic applications.
    Lafjah M; Djafri F; Bengueddach A; Keller N; Keller V
    J Hazard Mater; 2011 Feb; 186(2-3):1218-25. PubMed ID: 21177024
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.