BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 21836607)

  • 41. Resistance of T-cell acute lymphoblastic leukemia to tumor necrosis factor--related apoptosis-inducing ligand-mediated apoptosis.
    Akahane K; Inukai T; Zhang X; Hirose K; Kuroda I; Goi K; Honna H; Kagami K; Nakazawa S; Endo K; Kubota T; Yagita H; Koyama-Okazaki T; Sugita K
    Exp Hematol; 2010 Oct; 38(10):885-95. PubMed ID: 20670671
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bcl-2 maturation pattern in T-cells distinguishes thymic neoplasm/hyperplasia, T-lymphoblastic lymphoma, and reactive lymph nodes.
    Ward N; Baqai J; Zehnpfennig A; Fine N; Huang J; Smith MD
    Cytometry B Clin Cytom; 2018 May; 94(3):444-450. PubMed ID: 28718205
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Epigenetic loss of the familial tumor-suppressor gene exostosin-1 (EXT1) disrupts heparan sulfate synthesis in cancer cells.
    Ropero S; Setien F; Espada J; Fraga MF; Herranz M; Asp J; Benassi MS; Franchi A; Patiño A; Ward LS; Bovee J; Cigudosa JC; Wim W; Esteller M
    Hum Mol Genet; 2004 Nov; 13(22):2753-65. PubMed ID: 15385438
    [TBL] [Abstract][Full Text] [Related]  

  • 44. T-cell acute lymphoblastic leukaemia: recent molecular biology findings.
    Kraszewska MD; Dawidowska M; Szczepański T; Witt M
    Br J Haematol; 2012 Feb; 156(3):303-15. PubMed ID: 22145858
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The molecular basis of Lmo2-induced T-cell acute lymphoblastic leukemia.
    Curtis DJ; McCormack MP
    Clin Cancer Res; 2010 Dec; 16(23):5618-23. PubMed ID: 20861166
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Acute lymphoblastic leukemia.
    Onciu M
    Hematol Oncol Clin North Am; 2009 Aug; 23(4):655-74. PubMed ID: 19577163
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Very long intergenic non-coding RNA transcripts and expression profiles are associated to specific childhood acute lymphoblastic leukemia subtypes.
    Caron M; St-Onge P; Drouin S; Richer C; Sontag T; Busche S; Bourque G; Pastinen T; Sinnett D
    PLoS One; 2018; 13(11):e0207250. PubMed ID: 30440012
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The CpG island methylator phenotype correlates with long-range epigenetic silencing in colorectal cancer.
    Karpinski P; Ramsey D; Grzebieniak Z; Sasiadek MM; Blin N
    Mol Cancer Res; 2008 Apr; 6(4):585-91. PubMed ID: 18403637
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CpG island methylator phenotypes in aging and cancer.
    Toyota M; Issa JP
    Semin Cancer Biol; 1999 Oct; 9(5):349-57. PubMed ID: 10547343
    [TBL] [Abstract][Full Text] [Related]  

  • 50. DNA methylation and the hygiene hypothesis: connecting respiratory allergy and childhood acute lymphoblastic leukemia.
    Langie SA; Timms JA; De Boever P; McKay JA
    Epigenomics; 2019 Oct; 11(13):1519-1537. PubMed ID: 31536380
    [No Abstract]   [Full Text] [Related]  

  • 51. ERG Expression is Helpful in Differentiating T-Lymphoblastic Lymphoma from Thymoma.
    Huang W; Zhang W; Zeng L; Liao S; Liu F; Li L
    Int J Surg Pathol; 2023 Apr; 31(2):137-141. PubMed ID: 35435050
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Correct interpretation of T-ALL oncogene expression relies on normal human thymocyte subsets as reference material.
    Larmonie NS; Dik WA; van der Velden VH; Hoogeveen PG; Beverloo HB; Meijerink JP; van Dongen JJ; Langerak AW
    Br J Haematol; 2012 Apr; 157(1):142-6. PubMed ID: 22053714
    [No Abstract]   [Full Text] [Related]  

  • 53. Hypermethylation of antisense long noncoding RNAs in acute lymphoblastic leukemia.
    Arthur G; Almamun M; Taylor K
    Epigenomics; 2017 May; 9(5):635-645. PubMed ID: 28093925
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Missing mismatch repair: a key to T cell immortality.
    Belcheva A; Kolaj B; Martin A
    Leuk Lymphoma; 2010 Oct; 51(10):1777-8. PubMed ID: 20858090
    [No Abstract]   [Full Text] [Related]  

  • 55. DNA methylation as a potential mediator of environmental risks in the development of childhood acute lymphoblastic leukemia.
    Timms JA; Relton CL; Rankin J; Strathdee G; McKay JA
    Epigenomics; 2016 Apr; 8(4):519-36. PubMed ID: 27035209
    [TBL] [Abstract][Full Text] [Related]  

  • 56. DNA hypermethylation does not negatively impact the transcription of the TNF-α gene in an acute T-cell leukemia.
    Jayaraman A; Jayaraman S
    Epigenomics; 2019 Dec; 11(16):1753-1763. PubMed ID: 31755306
    [No Abstract]   [Full Text] [Related]  

  • 57. Aberrations in DNA methylation are detectable during remission of acute lymphoblastic leukemia and predict patient outcome.
    van Otterdijk SD; Norden J; Dickinson AM; Pearce MS; Relton CL; Mathers JC; Strathdee G
    Epigenomics; 2015; 7(1):35-45. PubMed ID: 25687464
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Methylation analysis of asparagine synthetase gene in acute lymphoblastic leukemia cells.
    Akagi T; Yin D; Kawamata N; Bartram CR; Hofmann WK; Wolf I; Miller CW; Koeffler HP
    Leukemia; 2006 Jul; 20(7):1303-6. PubMed ID: 16598302
    [No Abstract]   [Full Text] [Related]  

  • 59. Thymus-Brain Connections in T-Cell Acute Lymphoblastic Leukemia.
    Mendes-da-Cruz DA; Belorio EP; Cotta-de-Almeida V
    Neuroimmunomodulation; 2024; 31(1):51-61. PubMed ID: 38272012
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Molecular biology in childhood acute lymphoblastic leukemia (ALL)].
    Manabe A
    Rinsho Ketsueki; 2013 Oct; 54(10):1999-2005. PubMed ID: 24064854
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.