These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 21836608)
1. C-terminal mutation of RUNX1 attenuates the DNA-damage repair response in hematopoietic stem cells. Satoh Y; Matsumura I; Tanaka H; Harada H; Harada Y; Matsui K; Shibata M; Mizuki M; Kanakura Y Leukemia; 2012 Feb; 26(2):303-11. PubMed ID: 21836608 [TBL] [Abstract][Full Text] [Related]
2. Molecular pathways mediating MDS/AML with focus on AML1/RUNX1 point mutations. Harada Y; Harada H J Cell Physiol; 2009 Jul; 220(1):16-20. PubMed ID: 19334039 [TBL] [Abstract][Full Text] [Related]
3. Hyperactivation of the RAS signaling pathway in myelodysplastic syndrome with AML1/RUNX1 point mutations. Niimi H; Harada H; Harada Y; Ding Y; Imagawa J; Inaba T; Kyo T; Kimura A Leukemia; 2006 Apr; 20(4):635-44. PubMed ID: 16467864 [TBL] [Abstract][Full Text] [Related]
4. Molecular mechanisms that produce secondary MDS/AML by RUNX1/AML1 point mutations. Harada Y; Harada H J Cell Biochem; 2011 Feb; 112(2):425-32. PubMed ID: 21268063 [TBL] [Abstract][Full Text] [Related]
5. AML1/RUNX1 gene point mutations in childhood myeloid malignancies. Migas A; Savva N; Mishkova O; Aleinikova OV Pediatr Blood Cancer; 2011 Oct; 57(4):583-7. PubMed ID: 21294243 [TBL] [Abstract][Full Text] [Related]
6. Expression of the runt homology domain of RUNX1 disrupts homeostasis of hematopoietic stem cells and induces progression to myelodysplastic syndrome. Matsuura S; Komeno Y; Stevenson KE; Biggs JR; Lam K; Tang T; Lo MC; Cong X; Yan M; Neuberg DS; Zhang DE Blood; 2012 Nov; 120(19):4028-37. PubMed ID: 22919028 [TBL] [Abstract][Full Text] [Related]
7. Molecular bases of myelodysplastic syndromes: lessons from animal models. Komeno Y; Kitaura J; Kitamura T J Cell Physiol; 2009 Jun; 219(3):529-34. PubMed ID: 19259975 [TBL] [Abstract][Full Text] [Related]
8. RUNX1 mutations are frequent in chronic myelomonocytic leukemia and mutations at the C-terminal region might predict acute myeloid leukemia transformation. Kuo MC; Liang DC; Huang CF; Shih YS; Wu JH; Lin TL; Shih LY Leukemia; 2009 Aug; 23(8):1426-31. PubMed ID: 19282830 [TBL] [Abstract][Full Text] [Related]
10. Molecular characterisation of a recurrent, semi-cryptic RUNX1 translocation t(7;21) in myelodysplastic syndrome and acute myeloid leukaemia. Foster N; Paulsson K; Sales M; Cunningham J; Groves M; O'Connor N; Begum S; Stubbs T; McMullan DJ; Griffiths M; Pratt N; Tauro S Br J Haematol; 2010 Mar; 148(6):938-43. PubMed ID: 20064152 [TBL] [Abstract][Full Text] [Related]
11. Hematopoietic stem cells acquire survival advantage by loss of RUNX1 methylation identified in familial leukemia. Matsumura T; Nakamura-Ishizu A; Muddineni SSNA; Tan DQ; Wang CQ; Tokunaga K; Tirado-Magallanes R; Sian S; Benoukraf T; Okuda T; Asou N; Matsuoka M; Osato M; Suda T Blood; 2020 Oct; 136(17):1919-1932. PubMed ID: 32573733 [TBL] [Abstract][Full Text] [Related]
12. Transcriptional dysregulation mediated by RUNX1-RUNX1T1 in normal human progenitor cells and in acute myeloid leukaemia. Tonks A; Pearn L; Musson M; Gilkes A; Mills KI; Burnett AK; Darley RL Leukemia; 2007 Dec; 21(12):2495-505. PubMed ID: 17898786 [TBL] [Abstract][Full Text] [Related]
13. [Distinct genetic pathway in the molecular pathogenesis of MDS/AML with AML1/RUNX1 point mutations]. Harada H Rinsho Ketsueki; 2007 Jul; 48(7):541-6. PubMed ID: 17695302 [No Abstract] [Full Text] [Related]
14. Novel loss-of-function mutations of the haematopoiesis-related transcription factor, acute myeloid leukaemia 1/runt-related transcription factor 1, detected in acute myeloblastic leukaemia and myelodysplastic syndrome. Nakao M; Horiike S; Fukushima-Nakase Y; Nishimura M; Fujita Y; Taniwaki M; Okuda T Br J Haematol; 2004 Jun; 125(6):709-19. PubMed ID: 15180860 [TBL] [Abstract][Full Text] [Related]
15. Runx1 downregulates stem cell and megakaryocytic transcription programs that support niche interactions. Behrens K; Triviai I; Schwieger M; Tekin N; Alawi M; Spohn M; Indenbirken D; Ziegler M; Müller U; Alexander WS; Stocking C Blood; 2016 Jun; 127(26):3369-81. PubMed ID: 27076172 [TBL] [Abstract][Full Text] [Related]
16. Biological Activities of RUNX1 Mutants Predict Secondary Acute Leukemia Transformation from Chronic Myelomonocytic Leukemia and Myelodysplastic Syndromes. Tsai SC; Shih LY; Liang ST; Huang YJ; Kuo MC; Huang CF; Shih YS; Lin TH; Chiu MC; Liang DC Clin Cancer Res; 2015 Aug; 21(15):3541-51. PubMed ID: 25840971 [TBL] [Abstract][Full Text] [Related]
17. Repression of vascular endothelial growth factor expression by the runt-related transcription factor 1 in acute myeloid leukemia. Ter Elst A; Ma B; Scherpen FJ; de Jonge HJ; Douwes J; Wierenga AT; Schuringa JJ; Kamps WA; de Bont ES Cancer Res; 2011 Apr; 71(7):2761-71. PubMed ID: 21447743 [TBL] [Abstract][Full Text] [Related]
18. Proleukemic RUNX1 and CBFbeta mutations in the pathogenesis of acute leukemia. Engel ME; Hiebert SW Cancer Treat Res; 2010; 145():127-47. PubMed ID: 20306249 [TBL] [Abstract][Full Text] [Related]
19. RUNX1 gene mutation in primary myelodysplastic syndrome--the mutation can be detected early at diagnosis or acquired during disease progression and is associated with poor outcome. Chen CY; Lin LI; Tang JL; Ko BS; Tsay W; Chou WC; Yao M; Wu SJ; Tseng MH; Tien HF Br J Haematol; 2007 Nov; 139(3):405-14. PubMed ID: 17910630 [TBL] [Abstract][Full Text] [Related]