These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 21837336)

  • 1. Ultrathin free-standing close-packed gold nanoparticle films: conductivity and Raman scattering enhancement.
    Yu Q; Huang H; Peng X; Ye Z
    Nanoscale; 2011 Sep; 3(9):3868-75. PubMed ID: 21837336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, properties, and surface enhanced Raman scattering of gold and silver nanoparticles in chitosan matrix.
    Wei D; Qian W; Wu D; Xia Y; Liu X
    J Nanosci Nanotechnol; 2009 Apr; 9(4):2566-73. PubMed ID: 19438003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical properties of free-standing gelatin-Si nanoparticle composite films and gelatin-Si-Au nanoparticle composite films.
    Shi L; Yu T; Sun L; Pi X; Peng X
    Phys Chem Chem Phys; 2013 Dec; 15(46):20140-6. PubMed ID: 24158512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Au nanoparticle monolayers: preparation, structural conversion and their surface-enhanced Raman scattering effects.
    Wang MH; Hu JW; Li YJ; Yeung ES
    Nanotechnology; 2010 Apr; 21(14):145608. PubMed ID: 20234084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new strategy to prepare surface-enhanced Raman scattering-active substrates by electrochemical pulse deposition of gold nanoparticles.
    Mai FD; Hsu TC; Liu YC; Yang KH; Chen BC
    Chem Commun (Camb); 2011 Mar; 47(10):2958-60. PubMed ID: 21243131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow spontaneous transformation of the morphology of ultrathin gold films characterized by localized surface plasmon resonance spectroscopy.
    Qi ZM; Xia S; Zou H
    Nanotechnology; 2009 Jun; 20(25):255702. PubMed ID: 19491460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of layer structures of gold nanoparticle films on surface enhanced Raman scattering.
    Oh MK; Yun S; Kim SK; Park S
    Anal Chim Acta; 2009 Sep; 649(1):111-6. PubMed ID: 19664470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silver nanoparticle thin films with nanocavities for surface-enhanced Raman scattering.
    Kahraman M; Tokman N; Culha M
    Chemphyschem; 2008 Apr; 9(6):902-10. PubMed ID: 18366038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical Characterization of Ultrathin Cross-Linked Metal Nanoparticle Films.
    Han C; Percival SJ; Zhang B
    Langmuir; 2016 Sep; 32(35):8783-92. PubMed ID: 27501509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deposition method for preparing SERS-active gold nanoparticle substrates.
    Kho KW; Shen ZX; Zeng HC; Soo KC; Olivo M
    Anal Chem; 2005 Nov; 77(22):7462-71. PubMed ID: 16285701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface enhanced Raman scattering from layered assemblies of close-packed gold nanoparticles.
    Jung HY; Park YK; Park S; Kim SK
    Anal Chim Acta; 2007 Oct; 602(2):236-43. PubMed ID: 17933609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold nanoparticles on polarizable surfaces as Raman scattering antennas.
    Chen SY; Mock JJ; Hill RT; Chilkoti A; Smith DR; Lazarides AA
    ACS Nano; 2010 Nov; 4(11):6535-46. PubMed ID: 21038892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable preparation of ultrathin silica-coated Ag nanoparticles for SERS application.
    Hu Y; Shi Y; Jiang H; Huang G; Li C
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10643-9. PubMed ID: 24117322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-enhanced Raman scattering-active gold nanoparticles modified with a monolayer of silver film.
    Chang CC; Yang KH; Liu YC; Yu CC; Wu YH
    Analyst; 2012 Nov; 137(21):4943-50. PubMed ID: 22970430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly stable gelatin layer-protected gold nanoparticles as surface-enhanced Raman scattering substrates.
    Lee C; Zhang P
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4325-30. PubMed ID: 24738391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle films as electrodes: voltammetric sensitivity to the nanoparticle energy gap.
    Ranganathan S; Guo R; Murray RW
    Langmuir; 2007 Jun; 23(13):7372-7. PubMed ID: 17508765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable surface-enhanced Raman scattering from large gold nanoparticle arrays.
    Wei A; Kim B; Sadtler B; Tripp SL
    Chemphyschem; 2001 Dec; 2(12):743-5. PubMed ID: 23686924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single Nanoparticle-Based Heteronanojunction as a Plasmon Ruler for Measuring Dielectric Thin Films.
    Li L; Hutter T; Li W; Mahajan S
    J Phys Chem Lett; 2015 Jun; 6(12):2282-6. PubMed ID: 26266605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.