BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 21837361)

  • 1. ECM-based triple layered scaffolds for vascular tissue engineering.
    Grandi C; Martorina F; Lora S; Dalzoppo D; Amistà P; Sartore L; Di Liddo R; Conconi MT; Parnigotto PP
    Int J Mol Med; 2011 Dec; 28(6):947-52. PubMed ID: 21837361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heparinized PLLA/PLCL nanofibrous scaffold for potential engineering of small-diameter blood vessel: tunable elasticity and anticoagulation property.
    Wang W; Hu J; He C; Nie W; Feng W; Qiu K; Zhou X; Gao Y; Wang G
    J Biomed Mater Res A; 2015 May; 103(5):1784-97. PubMed ID: 25196988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering.
    Xu C; Inai R; Kotaki M; Ramakrishna S
    Tissue Eng; 2004; 10(7-8):1160-8. PubMed ID: 15363172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dynamically cultured collagen/cells-incorporated elastic scaffold for small-diameter vascular grafts.
    Park IS; Kim YH; Jung Y; Kim SH; Kim SH
    J Biomater Sci Polym Ed; 2012; 23(14):1807-20. PubMed ID: 21943800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique.
    Woodfield TB; Malda J; de Wijn J; Péters F; Riesle J; van Blitterswijk CA
    Biomaterials; 2004 Aug; 25(18):4149-61. PubMed ID: 15046905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of decellularized human umbilical vein (HUV) for vascular tissue engineering - comparison with endothelium-denuded HUV.
    Mangold S; Schrammel S; Huber G; Niemeyer M; Schmid C; Stangassinger M; Hoenicka M
    J Tissue Eng Regen Med; 2015 Jan; 9(1):13-23. PubMed ID: 23038628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bilayered scaffold for engineering cellularized blood vessels.
    Ju YM; Choi JS; Atala A; Yoo JJ; Lee SJ
    Biomaterials; 2010 May; 31(15):4313-21. PubMed ID: 20188414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A collagen/smooth muscle cell-incorporated elastic scaffold for tissue-engineered vascular grafts.
    Park IS; Kim SH; Kim YH; Kim IH; Kim SH
    J Biomater Sci Polym Ed; 2009; 20(11):1645-60. PubMed ID: 19619403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new biodegradable polyester elastomer for cartilage tissue engineering.
    Kang Y; Yang J; Khan S; Anissian L; Ameer GA
    J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective seeding of smooth muscle cells into tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering.
    Song Y; Wennink JW; Kamphuis MM; Vermes I; Poot AA; Feijen J; Grijpma DW
    J Biomed Mater Res A; 2010 Nov; 95(2):440-6. PubMed ID: 20648539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelialization of microporous YIGSR/PEG-modified polyurethaneurea.
    Jun HW; West JL
    Tissue Eng; 2005; 11(7-8):1133-40. PubMed ID: 16144449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A vascular tissue engineering scaffold with core-shell structured nano-fibers formed by coaxial electrospinning and its biocompatibility evaluation.
    Duan N; Geng X; Ye L; Zhang A; Feng Z; Guo L; Gu Y
    Biomed Mater; 2016 May; 11(3):035007. PubMed ID: 27206161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro fabrication of a tissue engineered human cardiovascular patch for future use in cardiovascular surgery.
    Yang C; Sodian R; Fu P; Lüders C; Lemke T; Du J; Hübler M; Weng Y; Meyer R; Hetzer R
    Ann Thorac Surg; 2006 Jan; 81(1):57-63. PubMed ID: 16368335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of a layered microstructured polycaprolactone construct for 3-D tissue engineering.
    Sarkar S; Isenberg BC; Hodis E; Leach JB; Desai TA; Wong JY
    J Biomater Sci Polym Ed; 2008; 19(10):1347-62. PubMed ID: 18854127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of a multilayered small-diameter vascular scaffold dual-loaded with VEGF and PDGF.
    Han F; Jia X; Dai D; Yang X; Zhao J; Zhao Y; Fan Y; Yuan X
    Biomaterials; 2013 Oct; 34(30):7302-13. PubMed ID: 23830580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of human aortic extracellular matrix as a scaffold for construction of a patient-specific tissue engineered vascular patch.
    Gao LP; Du MJ; Lv JJ; Schmull S; Huang RT; Li J
    Biomed Mater; 2017 Oct; 12(6):065006. PubMed ID: 28714856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of a de-cellularized rabbit aorta as a promising scaffold in vascular tissue engineering.
    Song L; Duan P; Zhou Q
    Cell Mol Biol (Noisy-le-grand); 2016 Mar; 62(3):31-8. PubMed ID: 27064871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering.
    Jia L; Prabhakaran MP; Qin X; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4640-50. PubMed ID: 24094171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional electrospun poly(lactide-co-ɛ-caprolactone) for small-diameter vascular grafts.
    Mun CH; Jung Y; Kim SH; Lee SH; Kim HC; Kwon IK; Kim SH
    Tissue Eng Part A; 2012 Aug; 18(15-16):1608-16. PubMed ID: 22462723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.