These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
809 related articles for article (PubMed ID: 21837362)
1. Impact of static magnetic fields on human myoblast cell cultures. Stern-Straeter J; Bonaterra GA; Kassner SS; Faber A; Sauter A; Schulz JD; Hörmann K; Kinscherf R; Goessler UR Int J Mol Med; 2011 Dec; 28(6):907-17. PubMed ID: 21837362 [TBL] [Abstract][Full Text] [Related]
2. Characterization of human myoblast differentiation for tissue-engineering purposes by quantitative gene expression analysis. Stern-Straeter J; Bonaterra GA; Kassner SS; Zügel S; Hörmann K; Kinscherf R; Goessler UR J Tissue Eng Regen Med; 2011 Aug; 5(8):e197-206. PubMed ID: 21370490 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of the effect of static magnetic fields combined with human hepatocyte growth factor on human satellite cell cultures. Birk R; Sommer U; Faber A; Aderhold C; Schulz JD; Hörmann K; Goessler UR; Stern-Straeter J Mol Med Rep; 2014 Jun; 9(6):2328-34. PubMed ID: 24682107 [TBL] [Abstract][Full Text] [Related]
4. Influence of static magnetic fields on human myoblast/mesenchymal stem cell co‑cultures. Mueller CE; Birk R; Kramer B; Wenzel A; Sommer JU; Hörmann K; Stern-Straeter J; Weilbach C Mol Med Rep; 2018 Mar; 17(3):3813-3820. PubMed ID: 29286120 [TBL] [Abstract][Full Text] [Related]
5. Influence of static magnetic fields combined with human insulin-like growth factor 1 on human satellite cell cultures. Birk R; Sommer JU; Haas D; Faber A; Aderhold C; Schultz JD; Hoermann K; Stern-Straeter J In Vivo; 2014; 28(5):795-802. PubMed ID: 25189891 [TBL] [Abstract][Full Text] [Related]
6. Characterization of human myoblast cultures for tissue engineering. Stern-Straeter J; Bran G; Riedel F; Sauter A; Hörmann K; Goessler UR Int J Mol Med; 2008 Jan; 21(1):49-56. PubMed ID: 18097615 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the effects of different culture media on the myogenic differentiation potential of adipose tissue- or bone marrow-derived human mesenchymal stem cells. Stern-Straeter J; Bonaterra GA; Juritz S; Birk R; Goessler UR; Bieback K; Bugert P; Schultz J; Hörmann K; Kinscherf R; Faber A Int J Mol Med; 2014 Jan; 33(1):160-70. PubMed ID: 24220225 [TBL] [Abstract][Full Text] [Related]
8. Static magnetic fields enhance skeletal muscle differentiation in vitro by improving myoblast alignment. Coletti D; Teodori L; Albertini MC; Rocchi M; Pristerà A; Fini M; Molinaro M; Adamo S Cytometry A; 2007 Oct; 71(10):846-56. PubMed ID: 17694560 [TBL] [Abstract][Full Text] [Related]
9. Effect of phase limited inhibition of MyoD expression on the terminal differentiation of bovine myoblasts: no alteration of Myf5 or myogenin expression. Muroya S; Nakajima I; Oe M; Chikuni K Dev Growth Differ; 2005 Sep; 47(7):483-92. PubMed ID: 16179075 [TBL] [Abstract][Full Text] [Related]
10. Hypoxia promotes proliferation of human myogenic satellite cells: a potential benefactor in tissue engineering of skeletal muscle. Koning M; Werker PM; van Luyn MJ; Harmsen MC Tissue Eng Part A; 2011 Jul; 17(13-14):1747-58. PubMed ID: 21438665 [TBL] [Abstract][Full Text] [Related]
11. MicroRNA-1 and microRNA-206 improve differentiation potential of human satellite cells: a novel approach for tissue engineering of skeletal muscle. Koning M; Werker PM; van der Schaft DW; Bank RA; Harmsen MC Tissue Eng Part A; 2012 May; 18(9-10):889-98. PubMed ID: 22070522 [TBL] [Abstract][Full Text] [Related]
12. Hypoxia affects positively the proliferation of bovine satellite cells and their myogenic differentiation through up-regulation of MyoD. Kook SH; Son YO; Lee KY; Lee HJ; Chung WT; Choi KC; Lee JC Cell Biol Int; 2008 Aug; 32(8):871-8. PubMed ID: 18468460 [TBL] [Abstract][Full Text] [Related]
13. Pattern of Pax7 expression during myogenesis in the posthatch chicken establishes a model for satellite cell differentiation and renewal. Halevy O; Piestun Y; Allouh MZ; Rosser BW; Rinkevich Y; Reshef R; Rozenboim I; Wleklinski-Lee M; Yablonka-Reuveni Z Dev Dyn; 2004 Nov; 231(3):489-502. PubMed ID: 15390217 [TBL] [Abstract][Full Text] [Related]
14. Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Cornelison DD; Wold BJ Dev Biol; 1997 Nov; 191(2):270-83. PubMed ID: 9398440 [TBL] [Abstract][Full Text] [Related]
15. In vitro characterization of proliferation and differentiation of trout satellite cells. Gabillard JC; Sabin N; Paboeuf G Cell Tissue Res; 2010 Dec; 342(3):471-7. PubMed ID: 21086139 [TBL] [Abstract][Full Text] [Related]
16. Differential effects of cyclic uniaxial stretch on human mesenchymal stem cell into skeletal muscle cell. Haghighipour N; Heidarian S; Shokrgozar MA; Amirizadeh N Cell Biol Int; 2012 Jul; 36(7):669-75. PubMed ID: 22681392 [TBL] [Abstract][Full Text] [Related]
17. Effects of 17β-estradiol on turkey myogenic satellite cell proliferation, differentiation, and expression of glypican-1, MyoD and myogenin. McFarland DC; Pesall JE; Coy CS; Velleman SG Comp Biochem Physiol A Mol Integr Physiol; 2013 Apr; 164(4):565-71. PubMed ID: 23319163 [TBL] [Abstract][Full Text] [Related]