These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The role of microRNAs in normal and malignant hematopoiesis. Vasilatou D; Papageorgiou S; Pappa V; Papageorgiou E; Dervenoulas J Eur J Haematol; 2010 Jan; 84(1):1-16. PubMed ID: 19744129 [TBL] [Abstract][Full Text] [Related]
3. Control of apoptosis in human multiple myeloma by insulin-like growth factor I (IGF-I). Jernberg-Wiklund H; Nilsson K Adv Cancer Res; 2007; 97():139-65. PubMed ID: 17419944 [TBL] [Abstract][Full Text] [Related]
4. [RNA interference: biogenesis molecular mechanisms and its applications in cervical cancer]. Peralta-Zaragoza O; Bermúdez-Morales VH; Madrid-Marina V Rev Invest Clin; 2010; 62(1):63-80. PubMed ID: 20415061 [TBL] [Abstract][Full Text] [Related]
5. MicroRNA function in cancer: oncogene or a tumor suppressor? Shenouda SK; Alahari SK Cancer Metastasis Rev; 2009 Dec; 28(3-4):369-78. PubMed ID: 20012925 [TBL] [Abstract][Full Text] [Related]
6. The effect of azacitidine on interleukin-6 signaling and nuclear factor-kappaB activation and its in vitro and in vivo activity against multiple myeloma. Khong T; Sharkey J; Spencer A Haematologica; 2008 Jun; 93(6):860-9. PubMed ID: 18443271 [TBL] [Abstract][Full Text] [Related]
9. MicroRNAs: emerging key regulators of hematopoiesis. Havelange V; Garzon R Am J Hematol; 2010 Dec; 85(12):935-42. PubMed ID: 20941782 [TBL] [Abstract][Full Text] [Related]
10. A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Kent OA; Mendell JT Oncogene; 2006 Oct; 25(46):6188-96. PubMed ID: 17028598 [TBL] [Abstract][Full Text] [Related]
11. Implication of miRNA in the diagnosis and treatment of breast cancer. Castañeda CA; Agullo-Ortuño MT; Fresno Vara JA; Cortes-Funes H; Gomez HL; Ciruelos E Expert Rev Anticancer Ther; 2011 Aug; 11(8):1265-75. PubMed ID: 21916580 [TBL] [Abstract][Full Text] [Related]
12. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Kefas B; Godlewski J; Comeau L; Li Y; Abounader R; Hawkinson M; Lee J; Fine H; Chiocca EA; Lawler S; Purow B Cancer Res; 2008 May; 68(10):3566-72. PubMed ID: 18483236 [TBL] [Abstract][Full Text] [Related]
13. MLN120B, a novel IkappaB kinase beta inhibitor, blocks multiple myeloma cell growth in vitro and in vivo. Hideshima T; Neri P; Tassone P; Yasui H; Ishitsuka K; Raje N; Chauhan D; Podar K; Mitsiades C; Dang L; Munshi N; Richardson P; Schenkein D; Anderson KC Clin Cancer Res; 2006 Oct; 12(19):5887-94. PubMed ID: 17020997 [TBL] [Abstract][Full Text] [Related]
14. The gold compound auranofin induces apoptosis of human multiple myeloma cells through both down-regulation of STAT3 and inhibition of NF-κB activity. Nakaya A; Sagawa M; Muto A; Uchida H; Ikeda Y; Kizaki M Leuk Res; 2011 Feb; 35(2):243-9. PubMed ID: 20542334 [TBL] [Abstract][Full Text] [Related]
15. Role of INTERLEUKIN-6 in the pathogenesis of multiple myeloma. Gadó K; Domján G; Hegyesi H; Falus A Cell Biol Int; 2000; 24(4):195-209. PubMed ID: 10816321 [TBL] [Abstract][Full Text] [Related]
17. Towards a new age in the treatment of multiple myeloma. Piazza FA; Gurrieri C; Trentin L; Semenzato G Ann Hematol; 2007 Mar; 86(3):159-72. PubMed ID: 17205287 [TBL] [Abstract][Full Text] [Related]
19. Targeting the vascular endothelial growth factor pathway in the treatment of multiple myeloma. Podar K; Richardson PG; Chauhan D; Anderson KC Expert Rev Anticancer Ther; 2007 Apr; 7(4):551-66. PubMed ID: 17428175 [TBL] [Abstract][Full Text] [Related]
20. Targeting miR-21 in glioma: a small RNA with big potential. Moore LM; Zhang W Expert Opin Ther Targets; 2010 Nov; 14(11):1247-57. PubMed ID: 20942748 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]