BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 21838238)

  • 1. Binding-activated localization microscopy of DNA structures.
    Schoen I; Ries J; Klotzsch E; Ewers H; Vogel V
    Nano Lett; 2011 Sep; 11(9):4008-11. PubMed ID: 21838238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence microscopy with 6 nm resolution on DNA origami.
    Raab M; Schmied JJ; Jusuk I; Forthmann C; Tinnefeld P
    Chemphyschem; 2014 Aug; 15(12):2431-5. PubMed ID: 24895173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superresolution imaging of single DNA molecules using stochastic photoblinking of minor groove and intercalating dyes.
    Miller H; Zhou Z; Wollman AJ; Leake MC
    Methods; 2015 Oct; 88():81-8. PubMed ID: 25637032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resolving single-molecule assembled patterns with superresolution blink-microscopy.
    Cordes T; Strackharn M; Stahl SW; Summerer W; Steinhauer C; Forthmann C; Puchner EM; Vogelsang J; Gaub HE; Tinnefeld P
    Nano Lett; 2010 Feb; 10(2):645-51. PubMed ID: 20017533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superresolution microscopy with transient binding.
    Molle J; Raab M; Holzmeister S; Schmitt-Monreal D; Grohmann D; He Z; Tinnefeld P
    Curr Opin Biotechnol; 2016 Jun; 39():8-16. PubMed ID: 26773299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA and chromatin imaging with super-resolution fluorescence microscopy based on single-molecule localization.
    Flors C
    Biopolymers; 2011 May; 95(5):290-7. PubMed ID: 21184489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging chromatin nanostructure with binding-activated localization microscopy based on DNA structure fluctuations.
    Szczurek A; Klewes L; Xing J; Gourram A; Birk U; Knecht H; Dobrucki JW; Mai S; Cremer C
    Nucleic Acids Res; 2017 May; 45(8):e56. PubMed ID: 28082388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules.
    Burnette DT; Sengupta P; Dai Y; Lippincott-Schwartz J; Kachar B
    Proc Natl Acad Sci U S A; 2011 Dec; 108(52):21081-6. PubMed ID: 22167805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D superresolution microscopy by supercritical angle detection.
    Deschamps J; Mund M; Ries J
    Opt Express; 2014 Nov; 22(23):29081-91. PubMed ID: 25402146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-numerical-aperture cryogenic light microscopy for increased precision of superresolution reconstructions.
    Nahmani M; Lanahan C; DeRosier D; Turrigiano GG
    Proc Natl Acad Sci U S A; 2017 Apr; 114(15):3832-3836. PubMed ID: 28348224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization of Bacterial Protein Complexes Labeled with Fluorescent Proteins and Nanobody Binders for STED Microscopy.
    Cramer K; Bolender AL; Stockmar I; Jungmann R; Kasper R; Shin JY
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31295803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fluorescence properties and binding mechanism of SYTOX green, a bright, low photo-damage DNA intercalating agent.
    Thakur S; Cattoni DI; Nöllmann M
    Eur Biophys J; 2015 Jul; 44(5):337-48. PubMed ID: 26024786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-label STED nanoscopy of living cells using photochromism.
    Willig KI; Stiel AC; Brakemann T; Jakobs S; Hell SW
    Nano Lett; 2011 Sep; 11(9):3970-3. PubMed ID: 21786833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative nanoscale imaging of orientational order in biological filaments by polarized superresolution microscopy.
    Valades Cruz CA; Shaban HA; Kress A; Bertaux N; Monneret S; Mavrakis M; Savatier J; Brasselet S
    Proc Natl Acad Sci U S A; 2016 Feb; 113(7):E820-8. PubMed ID: 26831082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM).
    Rust MJ; Bates M; Zhuang X
    Nat Methods; 2006 Oct; 3(10):793-5. PubMed ID: 16896339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using DNA origami nanorulers as traceable distance measurement standards and nanoscopic benchmark structures.
    Raab M; Jusuk I; Molle J; Buhr E; Bodermann B; Bergmann D; Bosse H; Tinnefeld P
    Sci Rep; 2018 Jan; 8(1):1780. PubMed ID: 29379061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy.
    Hajj B; Wisniewski J; El Beheiry M; Chen J; Revyakin A; Wu C; Dahan M
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17480-5. PubMed ID: 25422417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes.
    Balzarotti F; Eilers Y; Gwosch KC; GynnÄ AH; Westphal V; Stefani FD; Elf J; Hell SW
    Science; 2017 Feb; 355(6325):606-612. PubMed ID: 28008086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualizing protein-DNA interactions in live bacterial cells using photoactivated single-molecule tracking.
    Uphoff S; Sherratt DJ; Kapanidis AN
    J Vis Exp; 2014 Mar; (85):. PubMed ID: 24638084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative imaging of a bacterial surface-located GFP fusion protein by epifluorescence and scanning near-field optical microscopy.
    Gunning AP; Bongaerts RJ; Kirby AR; Hinton JC; Morris VJ
    J Microsc; 2005 Apr; 218(Pt 1):46-51. PubMed ID: 15817062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.