These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 21838270)

  • 1. Conductance-based chemical sensing in metallic nanowires and metal-semiconductor nanostructures.
    Duan BK; Zhang J; Bohn PW
    Anal Chem; 2012 Jan; 84(1):2-8. PubMed ID: 21838270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam.
    Xu S; Tian M; Wang J; Xu J; Redwing JM; Chan MH
    Small; 2005 Dec; 1(12):1221-9. PubMed ID: 17193423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Schottky nanocontact of one-dimensional semiconductor nanostructures probed by using conductive atomic force microscopy.
    Lee JA; Lim YR; Jung CS; Choi JH; Im HS; Park K; Park J; Kim GT
    Nanotechnology; 2016 Oct; 27(42):425711. PubMed ID: 27640642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the role of individual metal oxide nanowires in the scaling down of chemical sensors.
    Hernandez-Ramirez F; Prades JD; Jimenez-Diaz R; Fischer T; Romano-Rodriguez A; Mathur S; Morante JR
    Phys Chem Chem Phys; 2009 Sep; 11(33):7105-10. PubMed ID: 19672516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensing properties of different classes of gases based on the nanowire-electrode junction barrier modulation.
    Singh N; Yan C; Lee PS; Comini E
    Nanoscale; 2011 Apr; 3(4):1760-5. PubMed ID: 21347489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanorod based Schottky contact gas sensors in reversed bias condition.
    Yu J; Ippolito SJ; Wlodarski W; Strano M; Kalantar-zadeh K
    Nanotechnology; 2010 Jul; 21(26):265502. PubMed ID: 20534895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of semiconducting and metallic indium oxide nanowires.
    Lim T; Lee S; Meyyappan M; Ju S
    ACS Nano; 2011 May; 5(5):3917-22. PubMed ID: 21504171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and electrical properties of ultrafine Ga2O3 nanowires.
    Huang Y; Yue S; Wang Z; Wang Q; Shi C; Xu Z; Bai XD; Tang C; Gu C
    J Phys Chem B; 2006 Jan; 110(2):796-800. PubMed ID: 16471605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential controlled electrochemical conversion of AgCN and Cu(OH)2 nanofibers into metal nanoparticles, nanoprisms, nanofibers, and porous networks.
    Bourret GR; Lennox RB
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3745-58. PubMed ID: 21121642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extending the capability of STM break junction for conductance measurement of atomic-size nanowires: an electrochemical strategy.
    Zhou XS; Wei YM; Liu L; Chen ZB; Tang J; Mao BW
    J Am Chem Soc; 2008 Oct; 130(40):13228-30. PubMed ID: 18788809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation, characterization and scanned conductance microscopy studies of DNA-templated one-dimensional copper nanostructures.
    Watson SM; Wright NG; Horrocks BR; Houlton A
    Langmuir; 2010 Feb; 26(3):2068-75. PubMed ID: 19754197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct integration of metal oxide nanowires into an effective gas sensing device.
    Vomiero A; Ponzoni A; Comini E; Ferroni M; Faglia G; Sberveglieri G
    Nanotechnology; 2010 Apr; 21(14):145502. PubMed ID: 20220218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the nanoscale Schottky barrier of metal/semiconductor interfaces of Pt/CdSe/Pt nanodumbbells by conductive-probe atomic force microscopy.
    Kwon S; Lee SJ; Kim SM; Lee Y; Song H; Park JY
    Nanoscale; 2015 Aug; 7(29):12297-301. PubMed ID: 26136054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of gating and pressure on the electronic transport properties of crossed nanotube junctions: formation of a Schottky barrier.
    Havu P; Hashemi MJ; Kaukonen M; Seppälä ET; Nieminen RM
    J Phys Condens Matter; 2011 Mar; 23(11):112203. PubMed ID: 21358037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperative effects in molecular conduction II: The semiconductor-metal molecular junction.
    Landau A; Nitzan A; Kronik L
    J Phys Chem A; 2009 Jul; 113(26):7451-60. PubMed ID: 19348487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron transport in single molecules: from benzene to graphene.
    Chen F; Tao NJ
    Acc Chem Res; 2009 Mar; 42(3):429-38. PubMed ID: 19253984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures.
    Wu Y; Xiang J; Yang C; Lu W; Lieber CM
    Nature; 2004 Jul; 430(6995):61-5. PubMed ID: 15229596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dip-pen-nanolithographic patterning of metallic, semiconductor, and metal oxide nanostructures on surfaces.
    Basnar B; Willner I
    Small; 2009 Jan; 5(1):28-44. PubMed ID: 19130428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Length-dependent conductance of molecular wires and contact resistance in metal-molecule-metal junctions.
    Liu H; Wang N; Zhao J; Guo Y; Yin X; Boey FY; Zhang H
    Chemphyschem; 2008 Jul; 9(10):1416-24. PubMed ID: 18512822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.