These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 21838315)

  • 1. Role of zinc in MSW fly ash during formation of chlorinated aromatics.
    Fujimori T; Tanino Y; Takaoka M
    Environ Sci Technol; 2011 Sep; 45(18):7678-84. PubMed ID: 21838315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contrasting effects of sulfur dioxide on cupric oxide and chloride during thermochemical formation of chlorinated aromatics.
    Fujimori T; Nishimoto Y; Shiota K; Takaoka M
    Environ Sci Technol; 2014 Dec; 48(23):13644-51. PubMed ID: 25377729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermochemical behavior of lead adjusting formation of chlorinated aromatics in MSW fly ash.
    Fujimori T; Tanino Y; Takaoka M
    Environ Sci Technol; 2013 Mar; 47(5):2169-76. PubMed ID: 23363298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Cu, Fe, Pb, and Zn chlorides and oxides on formation of chlorinated aromatic compounds in MSWI fly ash.
    Fujimori T; Takaoka M; Takeda N
    Environ Sci Technol; 2009 Nov; 43(21):8053-9. PubMed ID: 19924922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coexistence of Cu, Fe, Pb, and Zn oxides and chlorides as a determinant of chlorinated aromatics generation in municipal solid waste incinerator fly ash.
    Fujimori T; Tanino Y; Takaoka M
    Environ Sci Technol; 2014; 48(1):85-92. PubMed ID: 24308371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of chlorinated aromatics in model fly ashes using various copper compounds.
    Takaoka M; Fujimori T; Shiono A; Yamamoto T; Takeda N; Oshita K; Uruga T; Sun Y; Tanaka T
    Chemosphere; 2010 Jun; 80(2):144-9. PubMed ID: 20452643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deactivation of metal chlorides by alkaline compounds inhibits formation of chlorinated aromatics.
    Fujimori T; Fujinaga Y; Takaoka M
    Environ Sci Technol; 2010 Oct; 44(19):7678-84. PubMed ID: 20839860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlorinated aromatic compounds in a thermal process promoted by oxychlorination of ferric chloride.
    Fujimori T; Takaoka M; Morisawa S
    Environ Sci Technol; 2010 Mar; 44(6):1974-9. PubMed ID: 20170161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of copper speciation on the formation of chlorinated aromatics on real municipal solid waste incinerator fly ash.
    Takaoka M; Yamamoto T; Shiono A; Takeda N; Oshita K; Matsumoto T; Tanaka T
    Chemosphere; 2005 Jun; 59(10):1497-505. PubMed ID: 15876392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of chemical composition of fly ash on efficiency of metal separation in ash-melting of municipal solid waste.
    Okada T; Tomikawa H
    Waste Manag; 2013 Mar; 33(3):605-14. PubMed ID: 22981781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the speciation of copper in secondary fly ash by X-ray absorption spectroscopy.
    Tian S; Yu M; Wang W; Wang Q; Wu Z
    Environ Sci Technol; 2009 Dec; 43(24):9084-8. PubMed ID: 19928760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time gas-phase analysis of mono- to tri-chlorobenzenes generated from heated MSWI fly ashes containing various metal compounds: application of VUV-SPI-IT-TOFMS.
    Fujimori T; Takaoka M; Tsuruga S; Oshita K; Takeda N
    Environ Sci Technol; 2010 Jul; 44(14):5528-33. PubMed ID: 20550108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct chlorination of carbon by copper chloride in a thermal process.
    Fujimori T; Takaoka M
    Environ Sci Technol; 2009 Apr; 43(7):2241-6. PubMed ID: 19452869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leaching for recovery of copper from municipal solid waste incineration fly ash: influence of ash properties and metal speciation.
    Lassesson H; Fedje KK; Steenari BM
    Waste Manag Res; 2014 Aug; 32(8):755-62. PubMed ID: 25106538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaching characteristics of lead from melting furnace fly ash generated by melting of incineration fly ash.
    Okada T; Tomikawa H
    J Environ Manage; 2012 Nov; 110():207-14. PubMed ID: 22789656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal and hydrometallurgical recovery methods of heavy metals from municipal solid waste fly ash.
    Kuboňová L; Langová Š; Nowak B; Winter F
    Waste Manag; 2013 Nov; 33(11):2322-7. PubMed ID: 23809619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal catalyzed formation of chlorinated aromatic compounds: a study of the correlation pattern in incinerator fly ash.
    Oberg T; Ohrström T; Bergström J
    Chemosphere; 2007 Apr; 67(9):S185-90. PubMed ID: 17204302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of chlorides on Cd partitioning and speciation in a simulated MSW incinerator].
    Chen Y; Zhang YG; Li QH; Zhuo YQ; Chen CH
    Huan Jing Ke Xue; 2008 May; 29(5):1446-51. PubMed ID: 18624222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speciation of copper and zinc compounds relevant for the hazard property (HP) 14 classification of municipal solid waste incineration bottom and fly ashes.
    Scholz P; Vogel C; Schuck G; Simon FG
    Waste Manag; 2024 Dec; 189():421-426. PubMed ID: 39241560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decreased PCDD/F formation when co-firing a waste fuel and biomass in a CFB boiler by addition of sulphates or municipal sewage sludge.
    Åmand LE; Kassman H
    Waste Manag; 2013 Aug; 33(8):1729-39. PubMed ID: 23684693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.