BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 21838329)

  • 1. Direct quantitation of peptide-mediated protein transport across a droplet-interface bilayer.
    Huang J; Lein M; Gunderson C; Holden MA
    J Am Chem Soc; 2011 Oct; 133(40):15818-21. PubMed ID: 21838329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein transport across membranes: Comparison between lysine and guanidinium-rich carriers.
    Lein M; deRonde BM; Sgolastra F; Tew GN; Holden MA
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2980-4. PubMed ID: 26342679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide-Mediated Membrane Transport of Macromolecular Cargo Driven by Membrane Asymmetry.
    Li X; Huang J; Holden MA; Chen M
    Anal Chem; 2017 Nov; 89(22):12369-12374. PubMed ID: 29050472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-molecule imaging of the association of the cell-penetrating peptide Pep-1 to model membranes.
    Sharonov A; Hochstrasser RM
    Biochemistry; 2007 Jul; 46(27):7963-72. PubMed ID: 17567046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translocation or membrane disintegration? Implication of peptide-membrane interactions in pep-1 activity.
    Henriques ST; Castanho MA
    J Pept Sci; 2008 Apr; 14(4):482-7. PubMed ID: 18181239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast membrane association is a crucial factor in the peptide pep-1 translocation mechanism: a kinetic study followed by surface plasmon resonance.
    Henriques ST; Castanho MA; Pattenden LK; Aguilar MI
    Biopolymers; 2010; 94(3):314-22. PubMed ID: 20049920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Re-evaluating the role of strongly charged sequences in amphipathic cell-penetrating peptides: a fluorescence study using Pep-1.
    Henriques ST; Costa J; Castanho MA
    FEBS Lett; 2005 Aug; 579(20):4498-502. PubMed ID: 16083883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Consequences of nonlytic membrane perturbation to the translocation of the cell penetrating peptide pep-1 in lipidic vesicles.
    Henriques ST; Castanho MA
    Biochemistry; 2004 Aug; 43(30):9716-24. PubMed ID: 15274626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triggered release of molecules across droplet interface bilayer lipid membranes using photopolymerizable lipids.
    Punnamaraju S; You H; Steckl AJ
    Langmuir; 2012 May; 28(20):7657-64. PubMed ID: 22548362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A peptide carrier for the delivery of elastin into fibroblast cells.
    Nasrollahi SA; Fouladdel S; Taghibiglou C; Azizi E; Farboud ES
    Int J Dermatol; 2012 Aug; 51(8):923-9. PubMed ID: 22788807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage control of droplet interface bilayer lipid membrane dimensions.
    Punnamaraju S; Steckl AJ
    Langmuir; 2011 Jan; 27(2):618-26. PubMed ID: 21142057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Cell-penetrating peptide PEP-1-mediated transduction of enhanced green fluorescent protein into human umbilical vein endothelial cells].
    Dong X; Wang JN; Huang YZ; Guo LY; Kong X
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2007 Feb; 29(1):93-7. PubMed ID: 17380676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Building interconnected membrane networks.
    Holden MA
    Methods Cell Biol; 2015; 128():201-22. PubMed ID: 25997349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Cell-penetrating peptide PEP-1-mediated transduction of enhanced green fluorescent protein into human colorectal cancer SW480 cells].
    Dong X; Wang JN; Huang YZ; Guo LY; Kong X
    Ai Zheng; 2007 Feb; 26(2):216-9. PubMed ID: 17298757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The peptide carrier Pep-1 forms biologically efficient nanoparticle complexes.
    Muñoz-Morris MA; Heitz F; Divita G; Morris MC
    Biochem Biophys Res Commun; 2007 Apr; 355(4):877-82. PubMed ID: 17331466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy-independent translocation of cell-penetrating peptides occurs without formation of pores. A biophysical study with pep-1.
    Henriques ST; Quintas A; Bagatolli LA; Homblé F; Castanho MA
    Mol Membr Biol; 2007; 24(4):282-93. PubMed ID: 17520484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physicochemical characteristics of droplet interface bilayers.
    Huang Y; Fuller GG; Chandran Suja V
    Adv Colloid Interface Sci; 2022 Jun; 304():102666. PubMed ID: 35429720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of monoglyceride structure and cholesterol content on water permeability of the droplet bilayer.
    Michalak Z; Muzzio M; Milianta PJ; Giacomini R; Lee S
    Langmuir; 2013 Dec; 29(51):15919-25. PubMed ID: 24304231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical encapsulation of droplet interface bilayers for durable, portable biomolecular networks.
    Sarles SA; Leo DJ
    Lab Chip; 2010 Mar; 10(6):710-7. PubMed ID: 20221558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of the binding of signal peptides to lipid bilayers by dipoles near the hydrocarbon-water interface.
    Voglino L; McIntosh TJ; Simon SA
    Biochemistry; 1998 Sep; 37(35):12241-52. PubMed ID: 9724538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.