These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 21838329)

  • 1. Direct quantitation of peptide-mediated protein transport across a droplet-interface bilayer.
    Huang J; Lein M; Gunderson C; Holden MA
    J Am Chem Soc; 2011 Oct; 133(40):15818-21. PubMed ID: 21838329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein transport across membranes: Comparison between lysine and guanidinium-rich carriers.
    Lein M; deRonde BM; Sgolastra F; Tew GN; Holden MA
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2980-4. PubMed ID: 26342679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide-Mediated Membrane Transport of Macromolecular Cargo Driven by Membrane Asymmetry.
    Li X; Huang J; Holden MA; Chen M
    Anal Chem; 2017 Nov; 89(22):12369-12374. PubMed ID: 29050472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-molecule imaging of the association of the cell-penetrating peptide Pep-1 to model membranes.
    Sharonov A; Hochstrasser RM
    Biochemistry; 2007 Jul; 46(27):7963-72. PubMed ID: 17567046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translocation or membrane disintegration? Implication of peptide-membrane interactions in pep-1 activity.
    Henriques ST; Castanho MA
    J Pept Sci; 2008 Apr; 14(4):482-7. PubMed ID: 18181239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast membrane association is a crucial factor in the peptide pep-1 translocation mechanism: a kinetic study followed by surface plasmon resonance.
    Henriques ST; Castanho MA; Pattenden LK; Aguilar MI
    Biopolymers; 2010; 94(3):314-22. PubMed ID: 20049920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Re-evaluating the role of strongly charged sequences in amphipathic cell-penetrating peptides: a fluorescence study using Pep-1.
    Henriques ST; Costa J; Castanho MA
    FEBS Lett; 2005 Aug; 579(20):4498-502. PubMed ID: 16083883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Consequences of nonlytic membrane perturbation to the translocation of the cell penetrating peptide pep-1 in lipidic vesicles.
    Henriques ST; Castanho MA
    Biochemistry; 2004 Aug; 43(30):9716-24. PubMed ID: 15274626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triggered release of molecules across droplet interface bilayer lipid membranes using photopolymerizable lipids.
    Punnamaraju S; You H; Steckl AJ
    Langmuir; 2012 May; 28(20):7657-64. PubMed ID: 22548362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A peptide carrier for the delivery of elastin into fibroblast cells.
    Nasrollahi SA; Fouladdel S; Taghibiglou C; Azizi E; Farboud ES
    Int J Dermatol; 2012 Aug; 51(8):923-9. PubMed ID: 22788807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage control of droplet interface bilayer lipid membrane dimensions.
    Punnamaraju S; Steckl AJ
    Langmuir; 2011 Jan; 27(2):618-26. PubMed ID: 21142057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Cell-penetrating peptide PEP-1-mediated transduction of enhanced green fluorescent protein into human umbilical vein endothelial cells].
    Dong X; Wang JN; Huang YZ; Guo LY; Kong X
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2007 Feb; 29(1):93-7. PubMed ID: 17380676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Building interconnected membrane networks.
    Holden MA
    Methods Cell Biol; 2015; 128():201-22. PubMed ID: 25997349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Cell-penetrating peptide PEP-1-mediated transduction of enhanced green fluorescent protein into human colorectal cancer SW480 cells].
    Dong X; Wang JN; Huang YZ; Guo LY; Kong X
    Ai Zheng; 2007 Feb; 26(2):216-9. PubMed ID: 17298757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The peptide carrier Pep-1 forms biologically efficient nanoparticle complexes.
    Muñoz-Morris MA; Heitz F; Divita G; Morris MC
    Biochem Biophys Res Commun; 2007 Apr; 355(4):877-82. PubMed ID: 17331466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy-independent translocation of cell-penetrating peptides occurs without formation of pores. A biophysical study with pep-1.
    Henriques ST; Quintas A; Bagatolli LA; Homblé F; Castanho MA
    Mol Membr Biol; 2007; 24(4):282-93. PubMed ID: 17520484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physicochemical characteristics of droplet interface bilayers.
    Huang Y; Fuller GG; Chandran Suja V
    Adv Colloid Interface Sci; 2022 Jun; 304():102666. PubMed ID: 35429720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of monoglyceride structure and cholesterol content on water permeability of the droplet bilayer.
    Michalak Z; Muzzio M; Milianta PJ; Giacomini R; Lee S
    Langmuir; 2013 Dec; 29(51):15919-25. PubMed ID: 24304231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical encapsulation of droplet interface bilayers for durable, portable biomolecular networks.
    Sarles SA; Leo DJ
    Lab Chip; 2010 Mar; 10(6):710-7. PubMed ID: 20221558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of the binding of signal peptides to lipid bilayers by dipoles near the hydrocarbon-water interface.
    Voglino L; McIntosh TJ; Simon SA
    Biochemistry; 1998 Sep; 37(35):12241-52. PubMed ID: 9724538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.