BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 21838518)

  • 1. Mechanisms of dendritic spine remodeling in a rat model of traumatic brain injury.
    Campbell JN; Low B; Kurz JE; Patel SS; Young MT; Churn SB
    J Neurotrauma; 2012 Jan; 29(2):218-34. PubMed ID: 21838518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Traumatic brain injury causes an FK506-sensitive loss and an overgrowth of dendritic spines in rat forebrain.
    Campbell JN; Register D; Churn SB
    J Neurotrauma; 2012 Jan; 29(2):201-17. PubMed ID: 21517673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early, transient increase in complexin I and complexin II in the cerebral cortex following traumatic brain injury is attenuated by N-acetylcysteine.
    Yi JH; Hoover R; McIntosh TK; Hazell AS
    J Neurotrauma; 2006 Jan; 23(1):86-96. PubMed ID: 16430375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blockade of Astrocytic Calcineurin/NFAT Signaling Helps to Normalize Hippocampal Synaptic Function and Plasticity in a Rat Model of Traumatic Brain Injury.
    Furman JL; Sompol P; Kraner SD; Pleiss MM; Putman EJ; Dunkerson J; Mohmmad Abdul H; Roberts KN; Scheff SW; Norris CM
    J Neurosci; 2016 Feb; 36(5):1502-15. PubMed ID: 26843634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled cortical impact results in an extensive loss of dendritic spines that is not mediated by injury-induced amyloid-beta accumulation.
    Winston CN; Chellappa D; Wilkins T; Barton DJ; Washington PM; Loane DJ; Zapple DN; Burns MP
    J Neurotrauma; 2013 Dec; 30(23):1966-72. PubMed ID: 23879560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A significant increase in both basal and maximal calcineurin activity following fluid percussion injury in the rat.
    Kurz JE; Parsons JT; Rana A; Gibson CJ; Hamm RJ; Churn SB
    J Neurotrauma; 2005 Apr; 22(4):476-90. PubMed ID: 15853464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of Ih to neuronal damage in the hippocampus after traumatic brain injury in rats.
    Deng P; Xu ZC
    J Neurotrauma; 2011 Jul; 28(7):1173-83. PubMed ID: 21463147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postinjury administration of L-deprenyl improves cognitive function and enhances neuroplasticity after traumatic brain injury.
    Zhu J; Hamm RJ; Reeves TM; Povlishock JT; Phillips LL
    Exp Neurol; 2000 Nov; 166(1):136-52. PubMed ID: 11031090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of protein phosphatase 2B (calcineurin) subunit A isoforms in rat hippocampus after traumatic brain injury.
    Bales JW; Ma X; Yan HQ; Jenkins LW; Dixon CE
    J Neurotrauma; 2010 Jan; 27(1):109-20. PubMed ID: 19751097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impairment of synaptic plasticity in hippocampus is exacerbated by methylprednisolone in a rat model of traumatic brain injury.
    Zhang B; Chen X; Lin Y; Tan T; Yang Z; Dayao C; Liu L; Jiang R; Zhang J
    Brain Res; 2011 Mar; 1382():165-72. PubMed ID: 21276433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury.
    Lu D; Qu C; Goussev A; Jiang H; Lu C; Schallert T; Mahmood A; Chen J; Li Y; Chopp M
    J Neurotrauma; 2007 Jul; 24(7):1132-46. PubMed ID: 17610353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Midline brain injury in the immature rat induces sustained cognitive deficits, bihemispheric axonal injury and neurodegeneration.
    Huh JW; Widing AG; Raghupathi R
    Exp Neurol; 2008 Sep; 213(1):84-92. PubMed ID: 18599043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytoskeletal changes underlie estrogen's acute effects on synaptic transmission and plasticity.
    Kramár EA; Chen LY; Brandon NJ; Rex CS; Liu F; Gall CM; Lynch G
    J Neurosci; 2009 Oct; 29(41):12982-93. PubMed ID: 19828812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-injury administration of NAAG peptidase inhibitor prodrug, PGI-02776, in experimental TBI.
    Feng JF; Van KC; Gurkoff GG; Kopriva C; Olszewski RT; Song M; Sun S; Xu M; Neale JH; Yuen PW; Lowe DA; Zhou J; Lyeth BG
    Brain Res; 2011 Jun; 1395():62-73. PubMed ID: 21565332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship of calpain-mediated proteolysis to the expression of axonal and synaptic plasticity markers following traumatic brain injury in mice.
    Thompson SN; Gibson TR; Thompson BM; Deng Y; Hall ED
    Exp Neurol; 2006 Sep; 201(1):253-65. PubMed ID: 16814284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dose-response curve and optimal dosing regimen of cyclosporin A after traumatic brain injury in rats.
    Sullivan PG; Rabchevsky AG; Hicks RR; Gibson TR; Fletcher-Turner A; Scheff SW
    Neuroscience; 2000; 101(2):289-95. PubMed ID: 11074152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition.
    Wu A; Ying Z; Gomez-Pinilla F
    Exp Neurol; 2006 Feb; 197(2):309-17. PubMed ID: 16364299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevation of hippocampal MMP-3 expression and activity during trauma-induced synaptogenesis.
    Kim HJ; Fillmore HL; Reeves TM; Phillips LL
    Exp Neurol; 2005 Mar; 192(1):60-72. PubMed ID: 15698619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cellular mechanism for dendritic spine loss in the pilocarpine model of status epilepticus.
    Kurz JE; Moore BJ; Henderson SC; Campbell JN; Churn SB
    Epilepsia; 2008 Oct; 49(10):1696-710. PubMed ID: 18479390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-methyl-D-aspartate receptor subunit changes after traumatic injury to the developing brain.
    Giza CC; Maria NS; Hovda DA
    J Neurotrauma; 2006 Jun; 23(6):950-61. PubMed ID: 16774479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.