These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 21838553)
1. Encouraging behavioral diversity in evolutionary robotics: an empirical study. Mouret JB; Doncieux S Evol Comput; 2012; 20(1):91-133. PubMed ID: 21838553 [TBL] [Abstract][Full Text] [Related]
2. Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots. Ampatzis C; Tuci E; Trianni V; Christensen AL; Dorigo M Artif Life; 2009; 15(4):465-84. PubMed ID: 19463056 [TBL] [Abstract][Full Text] [Related]
3. Engineering the evolution of self-organizing behaviors in swarm robotics: a case study. Trianni V; Nolfi S Artif Life; 2011; 17(3):183-202. PubMed ID: 21554112 [TBL] [Abstract][Full Text] [Related]
4. Dynamical network interactions in distributed control of robots. Buscarino A; Fortuna L; Frasca M; Rizzo A Chaos; 2006 Mar; 16(1):015116. PubMed ID: 16599782 [TBL] [Abstract][Full Text] [Related]
5. A cellular mechanism for multi-robot construction via evolutionary multi-objective optimization of a gene regulatory network. Guo H; Meng Y; Jin Y Biosystems; 2009 Dec; 98(3):193-203. PubMed ID: 19446001 [TBL] [Abstract][Full Text] [Related]
6. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model. Tani J; Nishimoto R; Namikawa J; Ito M IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):43-59. PubMed ID: 18270081 [TBL] [Abstract][Full Text] [Related]
7. Different genetic algorithms and the evolution of specialization: a study with groups of simulated neural robots. Ferrauto T; Parisi D; Di Stefano G; Baldassarre G Artif Life; 2013; 19(2):221-53. PubMed ID: 23514239 [TBL] [Abstract][Full Text] [Related]
8. Evolution of adaptive synapses: robots with fast adaptive behavior in new environments. Urzelai J; Floreano D Evol Comput; 2001; 9(4):495-524. PubMed ID: 11709106 [TBL] [Abstract][Full Text] [Related]
9. Extending the Evolutionary Robotics approach to flying machines: an application to MAV teams. Ruini F; Cangelosi A Neural Netw; 2009; 22(5-6):812-21. PubMed ID: 19595566 [TBL] [Abstract][Full Text] [Related]
10. Emergence of structured interactions: from a theoretical model to pragmatic robotics. Revel A; Andry P Neural Netw; 2009 Mar; 22(2):116-25. PubMed ID: 19243912 [TBL] [Abstract][Full Text] [Related]
11. Multicriteria optimization for coordination of redundant robots using a dual neural network. Hou ZG; Cheng L; Tan M IEEE Trans Syst Man Cybern B Cybern; 2010 Aug; 40(4):1075-87. PubMed ID: 19923050 [TBL] [Abstract][Full Text] [Related]
12. Three generations of automatically designed robots. Pollack JB; Lipson H; Hornby G; Funes P Artif Life; 2001; 7(3):215-23. PubMed ID: 11712955 [TBL] [Abstract][Full Text] [Related]
13. Behavioral robustness: an emergent phenomenon by means of distributed mechanisms and neurodynamic determinacy. Fernandez-Leon JA Biosystems; 2012 Jan; 107(1):34-51. PubMed ID: 21963775 [TBL] [Abstract][Full Text] [Related]
14. Evolving homogeneous neurocontrollers for a group of heterogeneous robots: coordinated motion, cooperation, and acoustic communication. Tuci E; Ampatzis C; Vicentini F; Dorigo M Artif Life; 2008; 14(2):157-78. PubMed ID: 18331188 [TBL] [Abstract][Full Text] [Related]
15. The hierarchical fair competition (HFC) framework for sustainable evolutionary algorithms. Hu J; Goodman E; Seo K; Fan Z; Rosenberg R Evol Comput; 2005; 13(2):241-77. PubMed ID: 15969902 [TBL] [Abstract][Full Text] [Related]
16. Efficient and scalable Pareto optimization by evolutionary local selection algorithms. Menczer F; Degeratu M; Street WN Evol Comput; 2000; 8(2):223-47. PubMed ID: 10843522 [TBL] [Abstract][Full Text] [Related]
17. Neural network output feedback control of robot formations. Dierks T; Jagannathan S IEEE Trans Syst Man Cybern B Cybern; 2010 Apr; 40(2):383-99. PubMed ID: 19661005 [TBL] [Abstract][Full Text] [Related]
18. Creating high-level components with a generative representation for body-brain evolution. Hornby GS; Pollack JB Artif Life; 2002; 8(3):223-46. PubMed ID: 12537684 [TBL] [Abstract][Full Text] [Related]
19. Dual adaptive dynamic control of mobile robots using neural networks. Bugeja MK; Fabri SG; Camilleri L IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):129-41. PubMed ID: 19150763 [TBL] [Abstract][Full Text] [Related]
20. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics. Wai RJ; Yang ZW IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1326-46. PubMed ID: 18784015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]