These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 21838683)

  • 21. Chemical sensors for the early diagnosis of bacterial resistance to β-lactam antibiotics.
    Canabal R; González-Bello C
    Bioorg Chem; 2024 Sep; 150():107528. PubMed ID: 38852309
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activity of BAL30072 alone or combined with β-lactamase inhibitors or with meropenem against carbapenem-resistant Enterobacteriaceae and non-fermenters.
    Mushtaq S; Woodford N; Hope R; Adkin R; Livermore DM
    J Antimicrob Chemother; 2013 Jul; 68(7):1601-8. PubMed ID: 23449829
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metallo-β-Lactamase Inhibitors Inspired on Snapshots from the Catalytic Mechanism.
    Palacios AR; Rossi MA; Mahler GS; Vila AJ
    Biomolecules; 2020 Jun; 10(6):. PubMed ID: 32503337
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational and biological profile of boronic acids for the detection of bacterial serine- and metallo-β-lactamases.
    Santucci M; Spyrakis F; Cross S; Quotadamo A; Farina D; Tondi D; De Luca F; Docquier JD; Prieto AI; Ibacache C; Blázquez J; Venturelli A; Cruciani G; Costi MP
    Sci Rep; 2017 Dec; 7(1):17716. PubMed ID: 29255163
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Progress toward inhibitors of metallo-β-lactamases.
    McGeary RP; Tan DT; Schenk G
    Future Med Chem; 2017 May; 9(7):673-691. PubMed ID: 28504895
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective trihydroxyazepane NagZ inhibitors increase sensitivity of Pseudomonas aeruginosa to β-lactams.
    Mondon M; Hur S; Vadlamani G; Rodrigues P; Tsybina P; Oliver A; Mark BL; Vocadlo DJ; Blériot Y
    Chem Commun (Camb); 2013 Dec; 49(93):10983-5. PubMed ID: 24136176
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Beta-lactamase inhibitors: the story so far.
    Pérez-Llarena FJ; Bou G
    Curr Med Chem; 2009; 16(28):3740-65. PubMed ID: 19747143
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel β-lactam-β-lactamase inhibitor combinations: expectations for the treatment of carbapenem-resistant Gram-negative pathogens.
    Karaiskos I; Galani I; Souli M; Giamarellou H
    Expert Opin Drug Metab Toxicol; 2019 Feb; 15(2):133-149. PubMed ID: 30626244
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibitor discovery of full-length New Delhi metallo-β-lactamase-1 (NDM-1).
    Shen B; Yu Y; Chen H; Cao X; Lao X; Fang Y; Shi Y; Chen J; Zheng H
    PLoS One; 2013; 8(5):e62955. PubMed ID: 23675445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New Delhi metallo-β-lactamase (NDM-1): an update.
    Shakil S; Azhar EI; Tabrez S; Kamal MA; Jabir NR; Abuzenadah AM; Damanhouri GA; Alam Q
    J Chemother; 2011 Oct; 23(5):263-5. PubMed ID: 22005056
    [TBL] [Abstract][Full Text] [Related]  

  • 31. β-lactam antibiotics: An overview from a medicinal chemistry perspective.
    Lima LM; Silva BNMD; Barbosa G; Barreiro EJ
    Eur J Med Chem; 2020 Dec; 208():112829. PubMed ID: 33002736
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Epidemiology of β-Lactamase-Producing Pathogens.
    Bush K; Bradford PA
    Clin Microbiol Rev; 2020 Mar; 33(2):. PubMed ID: 32102899
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure-based enhancement of boronic acid-based inhibitors of AmpC beta-lactamase.
    Weston GS; Blázquez J; Baquero F; Shoichet BK
    J Med Chem; 1998 Nov; 41(23):4577-86. PubMed ID: 9804697
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The reactivity of beta-lactams, the mechanism of catalysis and the inhibition of beta-lactamases.
    Page MI
    Curr Pharm Des; 1999 Nov; 5(11):895-913. PubMed ID: 10539995
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibitors of β-Lactamases. New Life of β-Lactam Antibiotics.
    Egorov AM; Ulyashova MM; Rubtsova MY
    Biochemistry (Mosc); 2020 Nov; 85(11):1292-1309. PubMed ID: 33280574
    [TBL] [Abstract][Full Text] [Related]  

  • 36. WCK 5222 (cefepime/zidebactam) antimicrobial activity tested against Gram-negative organisms producing clinically relevant β-lactamases.
    Sader HS; Rhomberg PR; Flamm RK; Jones RN; Castanheira M
    J Antimicrob Chemother; 2017 Jun; 72(6):1696-1703. PubMed ID: 28333332
    [TBL] [Abstract][Full Text] [Related]  

  • 37. beta-Lactamase epidemiology and the utility of established and novel beta-lactamase inhibitors.
    Payne DJ; Du W; Bateson JH
    Expert Opin Investig Drugs; 2000 Feb; 9(2):247-61. PubMed ID: 11060675
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distribution of beta-lactamases in Acinetobacter baumannii clinical isolates and the effect of Syn 2190 (AmpC inhibitor) on the MICs of different beta-lactam antibiotics.
    Danes C; Navia MM; Ruiz J; Marco F; Jurado A; Jimenez de Anta MT; Vila J
    J Antimicrob Chemother; 2002 Aug; 50(2):261-4. PubMed ID: 12161409
    [TBL] [Abstract][Full Text] [Related]  

  • 39. β-Lactamase inhibitors: a review of the patent literature (2010 - 2013).
    Buynak JD
    Expert Opin Ther Pat; 2013 Nov; 23(11):1469-81. PubMed ID: 23967802
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three decades of beta-lactamase inhibitors.
    Drawz SM; Bonomo RA
    Clin Microbiol Rev; 2010 Jan; 23(1):160-201. PubMed ID: 20065329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.