BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 21838727)

  • 1. The electrifying stomach.
    Koch KL
    Neurogastroenterol Motil; 2011 Sep; 23(9):815-8. PubMed ID: 21838727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution spatial analysis of slow wave initiation and conduction in porcine gastric dysrhythmia.
    O'Grady G; Egbuji JU; Du P; Lammers WJ; Cheng LK; Windsor JA; Pullan AJ
    Neurogastroenterol Motil; 2011 Sep; 23(9):e345-55. PubMed ID: 21714831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrogastrography: physiological basis and clinical application in diabetic gastropathy.
    Koch KL
    Diabetes Technol Ther; 2001; 3(1):51-62. PubMed ID: 11469708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted ablation of gastric pacemaker sites to modulate patterns of bioelectrical slow wave activation and propagation in an anesthetized pig model.
    Aghababaie Z; Cheng LK; Paskaranandavadivel N; Avci R; Chan CA; Matthee A; Amirapu S; Asirvatham SJ; Farrugia G; Beyder A; O'Grady G; Angeli-Gordon TR
    Am J Physiol Gastrointest Liver Physiol; 2022 Apr; 322(4):G431-G445. PubMed ID: 35137624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gastric dysrhythmias and nausea of pregnancy.
    Koch KL; Stern RM; Vasey M; Botti JJ; Creasy GW; Dwyer A
    Dig Dis Sci; 1990 Aug; 35(8):961-8. PubMed ID: 2384042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining the efficient inter-electrode distance for high-resolution mapping using a mathematical model of human gastric dysrhythmias.
    Putney J; O'Grady G; Angeli TR; Paskaranandavadivel N; Cheng LK; Erickson JC; Peng Du
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1448-51. PubMed ID: 26736542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gastric dysrhythmias: a potential objective measure of nausea.
    Koch KL
    Exp Brain Res; 2014 Aug; 232(8):2553-61. PubMed ID: 24916149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional multi-field modelling of gastric arrhythmias and their effects on antral contractions.
    Klemm L; Seydewitz R; Siebert T; Böl M
    Comput Biol Med; 2023 Feb; 153():106488. PubMed ID: 36592609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of surgical excisions on human gastric slow wave conduction, defined by high-resolution electrical mapping and in silico modeling.
    Du P; Hameed A; Angeli TR; Lahr C; Abell TL; Cheng LK; O'Grady G
    Neurogastroenterol Motil; 2015 Oct; 27(10):1409-22. PubMed ID: 26251163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localized gastric distension disrupts slow-wave entrainment leading to temporary ectopic propagation: a high-resolution electrical mapping study.
    Chan CA; Aghababaie Z; Paskaranandavadivel N; Avci R; Cheng LK; Angeli-Gordon TR
    Am J Physiol Gastrointest Liver Physiol; 2021 Dec; 321(6):G656-G667. PubMed ID: 34612062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiology and pathophysiology of the interstitial cells of Cajal: from bench to bedside. VI. Pathogenesis and therapeutic approaches to human gastric dysrhythmias.
    Owyang C; Hasler WL
    Am J Physiol Gastrointest Liver Physiol; 2002 Jul; 283(1):G8-15. PubMed ID: 12065286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution electrical mapping of porcine gastric slow-wave propagation from the mucosal surface.
    Angeli TR; Du P; Paskaranandavadivel N; Sathar S; Hall A; Asirvatham SJ; Farrugia G; Windsor JA; Cheng LK; O'Grady G
    Neurogastroenterol Motil; 2017 May; 29(5):. PubMed ID: 28035728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical significance of gastric myoelectrical dysrhythmias.
    Chen JD; Pan J; McCallum RW
    Dig Dis; 1995; 13(5):275-90. PubMed ID: 8542663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gastric ablation as a novel technique for modulating electrical conduction in the in vivo stomach.
    Aghababaie Z; Paskaranandavadivel N; Amirapu S; Chan CA; Du P; Asirvatham SJ; Farrugia G; Beyder A; O'Grady G; Cheng LK; Angeli-Gordon TR
    Am J Physiol Gastrointest Liver Physiol; 2021 Apr; 320(4):G573-G585. PubMed ID: 33470186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of pacemaker activity in the human stomach.
    Rhee PL; Lee JY; Son HJ; Kim JJ; Rhee JC; Kim S; Koh SD; Hwang SJ; Sanders KM; Ward SM
    J Physiol; 2011 Dec; 589(Pt 24):6105-18. PubMed ID: 22005683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous anterior and posterior serosal mapping of gastric slow-wave dysrhythmias induced by vasopressin.
    Du P; O'Grady G; Paskaranandavadivel N; Tang SJ; Abell T; Cheng LK
    Exp Physiol; 2016 Sep; 101(9):1206-1217. PubMed ID: 27265885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Theoretical Analysis of Electrogastrography (EGG) Signatures Associated With Gastric Dysrhythmias.
    Calder S; O'Grady G; Cheng LK; Peng Du
    IEEE Trans Biomed Eng; 2017 Jul; 64(7):1592-1601. PubMed ID: 28113227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution Mapping of Hyperglycemia-induced Gastric Slow Wave Dysrhythmias.
    Du P; Grady GO; Paskaranandavadivel N; Tang SJ; Abell T; Cheng LK
    J Neurogastroenterol Motil; 2019 Apr; 25(2):276-285. PubMed ID: 30870879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gastric dysrhythmias and the current status of electrogastrography.
    Koch KL
    Pract Gastroenterol; 1989; 13(4):37, 41-44. PubMed ID: 11538271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Every slow-wave impulse is associated with motor activity of the human stomach.
    Hocke M; Schöne U; Richert H; Görnert P; Keller J; Layer P; Stallmach A
    Am J Physiol Gastrointest Liver Physiol; 2009 Apr; 296(4):G709-16. PubMed ID: 19095766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.