BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 21839090)

  • 1. αB-crystallin polydispersity is a consequence of unbiased quaternary dynamics.
    Baldwin AJ; Lioe H; Robinson CV; Kay LE; Benesch JL
    J Mol Biol; 2011 Oct; 413(2):297-309. PubMed ID: 21839090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quaternary dynamics of αB-crystallin as a direct consequence of localised tertiary fluctuations in the C-terminus.
    Baldwin AJ; Hilton GR; Lioe H; Bagnéris C; Benesch JL; Kay LE
    J Mol Biol; 2011 Oct; 413(2):310-20. PubMed ID: 21839749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The IXI/V motif in the C-terminal extension of alpha-crystallins: alternative interactions and oligomeric assemblies.
    Pasta SY; Raman B; Ramakrishna T; Rao ChM
    Mol Vis; 2004 Sep; 10():655-62. PubMed ID: 15448619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The polydispersity of αB-crystallin is rationalized by an interconverting polyhedral architecture.
    Baldwin AJ; Lioe H; Hilton GR; Baker LA; Rubinstein JL; Kay LE; Benesch JL
    Structure; 2011 Dec; 19(12):1855-63. PubMed ID: 22153508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical structure of αB-crystallin.
    Hochberg GK; Benesch JL
    Prog Biophys Mol Biol; 2014 Jul; 115(1):11-20. PubMed ID: 24674783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between chaperone activity and oligomeric size of recombinant human alphaA- and alphaB-crystallin: a tryptic digestion study.
    Saha S; Das KP
    Proteins; 2004 Nov; 57(3):610-7. PubMed ID: 15382236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilization of oligomeric structure of α-crystallin by Zn+² through intersubunit bridging.
    Karmakar S; Das KP
    Biopolymers; 2011 Feb; 95(2):105-16. PubMed ID: 20857505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for specific subunit distribution and interactions in the quaternary structure of alpha-crystallin.
    Morris AM; Aquilina JA
    Proteins; 2010 Aug; 78(11):2546-53. PubMed ID: 20535821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AlphaA-crystallin interacting regions in the small heat shock protein, alphaB-crystallin.
    Sreelakshmi Y; Santhoshkumar P; Bhattacharyya J; Sharma KK
    Biochemistry; 2004 Dec; 43(50):15785-95. PubMed ID: 15595834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significance of alpha-crystallin heteropolymer with a 3:1 alphaA/alphaB ratio: chaperone-like activity, structure and hydrophobicity.
    Srinivas PN; Reddy PY; Reddy GB
    Biochem J; 2008 Sep; 414(3):453-60. PubMed ID: 18479247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abnormal assemblies and subunit exchange of alphaB-crystallin R120 mutants could be associated with destabilization of the dimeric substructure.
    Michiel M; Skouri-Panet F; Duprat E; Simon S; Férard C; Tardieu A; Finet S
    Biochemistry; 2009 Jan; 48(2):442-53. PubMed ID: 19140694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies of alphaB crystallin subunit dynamics by surface plasmon resonance.
    Liu L; Ghosh JG; Clark JI; Jiang S
    Anal Biochem; 2006 Mar; 350(2):186-95. PubMed ID: 16480679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing alpha-crystallin structure using chemical cross-linkers and mass spectrometry.
    Peterson JJ; Young MM; Takemoto LJ
    Mol Vis; 2004 Nov; 10():857-66. PubMed ID: 15570221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantitative NMR spectroscopic examination of the flexibility of the C-terminal extensions of the molecular chaperones, αA- and αB-crystallin.
    Treweek TM; Rekas A; Walker MJ; Carver JA
    Exp Eye Res; 2010 Nov; 91(5):691-9. PubMed ID: 20732317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C-terminal interactions mediate the quaternary dynamics of αB-crystallin.
    Hilton GR; Hochberg GK; Laganowsky A; McGinnigle SI; Baldwin AJ; Benesch JL
    Philos Trans R Soc Lond B Biol Sci; 2013 May; 368(1617):20110405. PubMed ID: 23530258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The native oligomeric organization of alpha-crystallin, is it necessary for its chaperone function?
    Horwitz J; Huang Q; Ding L
    Exp Eye Res; 2004 Dec; 79(6):817-21. PubMed ID: 15642318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function.
    Laganowsky A; Benesch JL; Landau M; Ding L; Sawaya MR; Cascio D; Huang Q; Robinson CV; Horwitz J; Eisenberg D
    Protein Sci; 2010 May; 19(5):1031-43. PubMed ID: 20440841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tandem mass spectrometry reveals the quaternary organization of macromolecular assemblies.
    Benesch JL; Aquilina JA; Ruotolo BT; Sobott F; Robinson CV
    Chem Biol; 2006 Jun; 13(6):597-605. PubMed ID: 16793517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal and acid denaturation of bovine lens α-crystallin.
    Rasmussen T; van de Weert M; Jiskoot W; Kasimova MR
    Proteins; 2011 Jun; 79(6):1747-58. PubMed ID: 21445944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of Cu2+-mediated generation of reactive oxygen species by the small heat shock protein αB-crystallin: the relative contributions of the N- and C-terminal domains.
    Prabhu S; Srinivas V; Ramakrishna T; Raman B; Rao ChM
    Free Radic Biol Med; 2011 Aug; 51(3):755-62. PubMed ID: 21658443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.